Bài 1 :
a, Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) \(\left(1\right)\)
Mà \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)
b) \(\dfrac{-1}{3}=\dfrac{-16}{48}< \dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}< \dfrac{-12}{48}=\dfrac{-1}{4}\)
Ta thấy :
\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)
Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\)
\(\Leftrightarrow B>A\)
Bài b :
\(-\dfrac{1}{3}=-\dfrac{24}{72}\) và \(-\dfrac{1}{4}=-\dfrac{18}{72}\)
Ta có :
\(-\dfrac{24}{12}< -\dfrac{23}{12}< -\dfrac{22}{12}< -\dfrac{21}{12}< -\dfrac{20}{12}< -\dfrac{19}{12}< -\dfrac{18}{12}\)
Vậy 5 số cần tìm là ...................