Chương II : Tam giác

H24
NT
2 tháng 3 2024 lúc 22:26

a: Xét ΔBAC vuông tại A và ΔBAD vuông tại A có

BA chung

AC=AD

Do đó;ΔBAC=ΔBAD

b: Ta có: ΔBAC=ΔBAD

=>\(\widehat{ABC}=\widehat{ABD}\)

Xét ΔBEA vuông tại E và ΔBFA vuông tại F có

BA chung

\(\widehat{EBA}=\widehat{FBA}\)

Do đó: ΔBEA=ΔBFA

=>AE=AF

=>ΔAEF cân tại A

c: ta có: ΔBEA=ΔBFA

=>BE=BF

Xét ΔBDC có \(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)

nên EF//DC

Bình luận (0)
AH
2 tháng 3 2024 lúc 22:29

Hình vẽ:

Bình luận (0)
AH
2 tháng 3 2024 lúc 22:53

Lời giải:

a.

Tam giác $ABC$ vuông tại $A\Rightarrow \widehat{BAC}=90^0$

$\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0$

Xét tam giác $ABC$ và $ABD$ có:

$AB$ chung

$\widehat{BAC}=\widehat{BAD}=90^0$

$AD=AC$ (gt)

$\Rightarrow \triangle ABC=\triangle ABD$ (c.g.c)

b.

Từ tam giác bằng nhau phần a

$\Rightarrow \widehat{DBA}=\widehat{CBA}$

$\Rightarrow \widehat{EBA}=\widehat{FBA}$

Xét tam giác $EBA$ và $FBA$ có:

$\widehat{EBA}=\widehat{FBA}$ (cmt)

$\widehat{BEA}=\widehat{BFA}=90^0$
$BA$ chung

$\Rightarrow \triangle EBA=\triangle FBA$ (ch-gn)

$\Rightarrow EA=FA$

$\Rightarrow AEF$ cân tại $A$.

c.

Từ tam giác bằng nhau phần b

$\Rightarrow BE=BF, AE=AF$

$\Rightarrow BA$ là trung trực của $EF$

$\Rightarrow BA\perp EF$

Mà $BA\perp DC$ 

$\Rightarrow EF\parallel DC$

 

 

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
H24
Xem chi tiết
UL
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
QT
Xem chi tiết
QT
Xem chi tiết
QT
Xem chi tiết
DH
Xem chi tiết
HL
Xem chi tiết