Luyện tập chung trang 36

HM
Hướng dẫn giải Thảo luận (1)

a) \(2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right);\)

\(\begin{array}{l}2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right)\\2\left( {x + 1} \right) - \left( {5x - 1} \right)\left( {x + 1} \right) = 0\\\left( {x + 1} \right)\left( {2 - 5x + 1} \right) = 0\\\left( {x + 1} \right)\left( {3 - 5x} \right) = 0\\TH1:x + 1 = 0\\x =  - 1\\TH2:3 - 5x = 0\\x = \frac{3}{5}\end{array}\)

Vậy \(x \in \left\{ { - 1;\frac{3}{5}} \right\}.\)

b) \(\left( { - 4x + 3x} \right)x = \left( {2x + 5} \right)x.\)

\(\begin{array}{l}\left( { - 4x + 3x} \right)x - \left( {2x + 5} \right)x = 0\\x\left( { - 4x + 3x - 2x - 5} \right) = 0\\x\left( { - 3x - 5} \right) = 0\\TH1:x = 0\\TH2:x = \frac{{ - 5}}{3}\end{array}\)

Vậy \(x \in \left\{ {0;\frac{{ - 5}}{3}} \right\}.\)

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

Nếu bỏ ra 450 triệu đồng ta sẽ có \(C\left( x \right) = 450\) từ đó ta có phương trình \(\frac{{50x}}{{100 - x}} = 450\)

Quy đồng mẫu số các phân số ta được \(\frac{{50x}}{{100 - x}} = \frac{{450\left( {100 - x} \right)}}{{100 - x}}\)

Khử mẫu ta được phương trình \(50x = 450\left( {100 - x} \right)\)

\(\begin{array}{l}50x = 45000 - 450x\\50x + 450x = 45000\\500x = 45000\\x = 90\left( {t/m} \right)\end{array}\)

Vậy nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được 90% loại tảo độc đó.

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

a) \(\frac{1}{{x + 2}} - \frac{2}{{{x^2} - 2x + 4}} = \frac{{x - 4}}{{{x^3} + 8}};\)

ĐKXĐ: \(x \ne  - 2.\)

Quy đồng mẫu thức ta được \(\frac{{1.\left( {{x^2} - 2x + 4} \right)}}{{\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}} - \frac{{2\left( {x + 2} \right)}}{{\left( {{x^2} - 2x + 4} \right)\left( {x + 2} \right)}} = \frac{{x - 4}}{{\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}}\)

Khử mẫu ta được \({x^2} - 2x + 4 - 2\left( {x + 2} \right) = x - 4\)

\(\begin{array}{l}{x^2} - 4x = x - 4\\x\left( {x - 4} \right) = x - 4\\x\left( {x - 4} \right) - \left( {x - 4} \right) = 0\\\left( {x - 4} \right)\left( {x - 1} \right) = 0\\TH1:x - 4 = 0\\x = 4\left( {t/m} \right)\end{array}\)

\(\begin{array}{l}TH2:x - 1 = 0\\x = 1\left( {t/m} \right)\end{array}\)

Vậy \(x \in \left\{ {4;1} \right\}\)

b) \(\frac{{2x}}{{x - 4}} + \frac{3}{{x + 4}} = \frac{{x - 12}}{{{x^2} - 16}}.\)

ĐKXĐ: \(x \ne  - 4;x \ne 4.\)

Quy đồng mẫu thức ta được \(\frac{{2x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} + \frac{{3\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x - 4} \right)}} = \frac{{x - 12}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\)

Khử mẫu ta được \(2x\left( {x + 4} \right) + 3\left( {x - 4} \right) = x - 12\)

\(\begin{array}{l}2{x^2} + 8x + 3x - 12 = x - 12\\2{x^2} + 10x = 0\\2x\left( {x + 5} \right) = 0\\TH1:2x = 0\\x = 0\left( {t/m} \right)\\TH2:x + 5 = 0\\x =  - 5\left( {t/m} \right)\end{array}\)

Vậy \(x \in \left\{ {0; - 5} \right\}\)

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

a) \(4a + 4 > 4b + 3;\)

Ta có \(a > b\) nên \(4a > 4b\)(nhân cả hai vế với số dương 4)

Suy ra \(4a + 3 > 4b + 3\) (cộng cả hai vế với số 3)

Mà \(4a + 4 > 4a + 3\) nên \(4a + 4 > 4b + 3\)

b) \(1 - 3a < 3 - 3b.\)

Ta có \(a > b\) nên \( - 3a <  - 3b\) (nhân cả hai vế với số -3)

Suy ra \(1 - 3a < 1 - 3b\) (cộng cả hai vế với 1)

Mà \(1 - 3b < 3 - 3b\) nên \(1 - 3a < 3 - 3b.\)

Trả lời bởi Hà Quang Minh