Tìm tập giá trị của các hàm số sau:
a) \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1;\)
b) \(y = \sin x + \cos x\).
Tìm tập giá trị của các hàm số sau:
a) \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1;\)
b) \(y = \sin x + \cos x\).
Giải các phương trình sau:
a) \(\cos \left( {3x - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\);
b) \(2{\sin ^2}x - 1 + \cos 3x = 0\);
c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\).
a) \(\cos \left( {3x - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\;\;\;\; \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x - \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi }\\{3x - \frac{\pi }{4} = - \frac{{3\pi }}{4} + k2\pi }\end{array}} \right.\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = \pi + k2\pi }\\{3x = - \frac{\pi }{2} + k2\pi }\end{array}} \right.\)
\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + \frac{{k2\pi }}{3}}\\{x = - \frac{\pi }{6} + \frac{{k2\pi }}{3}}\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)
b) \(2{\sin ^2}x - 1 + \cos 3x = 0\;\;\;\;\; \Leftrightarrow \cos 2x + \cos 3x = 0\;\; \Leftrightarrow 2\cos \frac{{5x}}{2}\cos \frac{x}{2} = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos \frac{{5x}}{2} = 0}\\{\cos \frac{x}{2} = 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{{5x}}{2} = \frac{\pi }{2} + k\pi }\\{\frac{{5x}}{2} = - \frac{\pi }{2} + k\pi }\\{\frac{x}{2} = \frac{\pi }{2} + k\pi }\\{\frac{x}{2} = - \frac{\pi }{2} + k\pi }\end{array}} \right.\;\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x = - \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x = \pi + k2\pi }\\{x = - \pi + k2\pi }\end{array}} \right.\;\;\;\left( {k \in \mathbb{Z}} \right)\)
c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\;\; \Leftrightarrow 2x + \frac{\pi }{5} = x - \frac{\pi }{6} + k\pi \;\;\; \Leftrightarrow x = - \frac{{11\pi }}{{30}} + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\)
Trả lời bởi Hà Quang MinhHuyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu được gọi tương ứng là huyết áp tâm thu và tâm trương. Chỉ số huyết áp của chúng ta được viết là huyết áp tâm thu/huyết áp tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử huyết áp của một người nào đó được mô hình hóa bởi hàm số
\(p\left( t \right) = 115 + 25\sin \left( {160\pi t} \right)\;\)
Trong đó p(t) là huyết áp tính theo đơn vị mmHg (milimet thủy ngân) và thời gian t tính theo phút.
a) Tìm chu kì của hàm số p(t)
b) Tìm số nhịp tim mỗi phút.
c) Tìm chỉ số huyết áp. So sánh huyết áp của người này với huyết áp bình thường.
a) Chu kỳ của hàm số \(p\left( t \right)\) là \(T = \frac{{2\pi }}{{160\pi }} = \frac{1}{{80}}\)
b) Thời gian giữa hai lần tim đập là \(T = \frac{1}{{80}}\) (phút)
Số nhịp tim mỗi phút là: \(\frac{1}{{\frac{1}{{80}}}} = 80\) (nhịp)
c) Ta có: \( - 1 \le sin\;\left( {160\pi t} \right)\; \le 1,\;\;\forall t \in R\)
\( \Leftrightarrow - 25 \le 25sin\;\left( {160\pi t} \right)\; \le 25,\;\forall t \in R\;\)
\( \Leftrightarrow 115 - 25 \le 115 + 25sin\;\left( {160\pi t} \right)\; \le 115 + 25,\;\forall t \in R\)
\( \Leftrightarrow 90 \le p\left( t \right) \le 140,\;\forall t \in R\)
Do đó, chỉ số huyết áp của người này là 140/90 và chỉ số huyết áp của người này cao hơn mức bình thường.
Trả lời bởi Hà Quang MinhKhi một tia sáng truyền từ không khi vào mặt nước thì một phần tia sáng bị phản xạ trên bề mặt, phần còn lại bị khúc xạ như trong Hình 1.26. Góc tới i liên hệ với góc khúc xạ r bởi Định luật khúc xạ ánh sáng
\(\frac{{\sin i}}{{\sin r}} = \frac{{{n_2}}}{{{n_1}}}\)
Ở đây, \({n_1}\) và \({n_2}\) tương ứng là chiết suất của môi trường 1 (không khí) và môi trường 2 (nước). Cho biết góc tới \(i = {50^0}\), hãy tính góc khúc xạ, biết rằng chiết suất của không khí bằng 1 còn chiết suất của nước là 1,33.
Theo bài ra ta có: \(i = 50^\circ ,{\rm{ }}{n_1}\; = 1,{\rm{ }}{n_2}\; = 1,33\) thay vào \(\frac{{\sin i}}{{\sin r}} = \frac{{{n_2}}}{{{n_1}}}\) ta được:
\(\begin{array}{l}\frac{{\sin {{50}^o}}}{{\sin r}} = \frac{{1,33}}{1}\,(r \ne 0)\\ \Rightarrow \sin r = \frac{{\sin {{50}^o}}}{{1,33}} \approx 0,57597\,\,(TM)\\ \Leftrightarrow \left[ \begin{array}{l}r \approx {35^o}10' + k{360^o}\\r \approx {180^o} - {35^o}10' + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}r \approx {35^o}10' + k{360^o}\\r \approx {144^o}50' + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
Mà \({0^o} < r < {90^o} \Rightarrow r \approx {35^o}10'\)
Vậy góc khúc xạ \(r \approx {35^o}10'\)
Trả lời bởi Hà Quang Minh
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha \le 1\;\; \Leftrightarrow - 2 \le \sin x + \cos x \le 2\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).
Trả lời bởi Hà Quang Minh