Trên đường trung trực của đoạn thẳng AB, lấy hai điểm phân biệt M, N. Khi đó khẳng định nào sau đây đúng ?
a) \(\widehat{AMN}\ne\widehat{BMN}\) b) \(\widehat{MAN}\ne\widehat{MBN}\)
c) \(\widehat{MNA}\ne\widehat{MNB}\) d) \(\Delta AMN=\Delta BMN\)
Trên đường trung trực của đoạn thẳng AB, lấy hai điểm phân biệt M, N. Khi đó khẳng định nào sau đây đúng ?
a) \(\widehat{AMN}\ne\widehat{BMN}\) b) \(\widehat{MAN}\ne\widehat{MBN}\)
c) \(\widehat{MNA}\ne\widehat{MNB}\) d) \(\Delta AMN=\Delta BMN\)
Cho hai tam giác cân chung đáy ABC và ABD, trong đó ABC là tam giác đều. Gọi E là trung điểm của AB. Khi đó, khẳng định nào sau đây sai ?
(A) Đường thẳng CD là đường trung trực của AB
(B) Điểm E không nằm trên đường thẳng CD
(C) Đường trung trực của AC đi qua B
(D) Đường trung trực của BC đi qua A
Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Hãy tìm :
a) AD và CD nếu BD = 5cm, AC = 8cm
b) AC nếu BD = 11,4cm; AD = 3,2 cm
a: Vì D nằm trên đường trung trực của BC nên DB=DC=5cm
=>AD=8-5=3(cm)
b: D nằm trên đường trung trực của BC nên DB=DC=11,4(cm)
AC=AD+CD=3,2+11,4=14,6(cm)
Trả lời bởi Nguyễn Lê Phước ThịnhTrong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng :
a) D là trung điểm của cạnh BC
b) \(\widehat{A}=\widehat{B}+\widehat{C}\)
a) Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.
b)
Ta có ∆DEB = ∆DEA(c.g.c) nên ˆB=ˆA1B^=A1^. Tương tự ˆC=ˆA2C^=A2^.
Suy ra ˆA=ˆA1+ˆA2=ˆB+ˆC
Trả lời bởi Đỗ Đức AnhChứng minh rằng nếu trong tam giác ABC có hai cạnh AB và AC không bằng nhau thì đường trung tuyến xuất phát từ đỉnh A không vuông góc với BC ?
Giả sử như AM vuông góc với BC
Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
Suy ra: AB=AC(trái với giả thiết)
Trả lời bởi Nguyễn Lê Phước ThịnhCho đường thẳng d và hai điểm A, B nằm về một phía của d sao cho AB không vuông góc với d. Hãy tìm trên d một điểm M sao cho \(\left|MA-MB\right|\) có giá trị nhỏ nhất ?
Ta có: \(\left|MA-MB\right|\ge0\) với một điểm M tùy ý.
\(\left|MA-MB\right|=0\) chỉ với điểm M mà MA = MB
=> M nằm trên đường trung trực của đoạn thẳng AB. (Có giao điểm này vì AB không vuông góc với đường thẳng d)
Vậy, \(\left|MA-MB\right|\) đạt GTNN là 0 khi M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB.
Trả lời bởi Quoc Tran Anh Le
Chọn D
Trả lời bởi Nguyễn Lê Phước Thịnh