Bài 7: Các khái niệm mở đầu

QL
Hướng dẫn giải Thảo luận (1)

Sau bài học này chúng ta sẽ giải quyết được bài toán trên như sau:

Ta sẽ sử dụng vectơ để biểu diễn các đại lượng gồm hướng và độ lớn như vận tốc gió.

Trong đó hướng của vectơ là hướng gió, độ dài vectơ là độ lớn của vận tốc gió.

Trả lời bởi Time line
QL
Hướng dẫn giải Thảo luận (1)

Tham khảo:

 

Gọi C là điểm mà tại đó tàu đổi từ hướng đông sang hướng Nam

Xét tam giác ABC ta có:

\(AC = BC = 10\;\left( {km} \right)\)

\( \Rightarrow \Delta ABC\) vuông cân tại C.

\( \Leftrightarrow \widehat A = {45^o}\)

Vậy con tàu phải đi theo hướng đông nam, góc \({45^o}\) so với hướng Đông.

Quãng đường con tàu phải đi là: \(AB = AC.\sqrt 2  = 10.\sqrt 2 \; \approx 14,142\;\left( {km} \right)\)

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

Các vectơ có độ dài bằng a và có điểm đầu, điểm cuối là các đỉnh của tam giác ABC là:

\(\overrightarrow {AB} ;\;\overrightarrow {BA} ;\;\overrightarrow {AC} ;\;\overrightarrow {CA} ;\;\overrightarrow {BC} ;\;\overrightarrow {CB} \)

Chú ý khi giải:

Vectơ \(\overrightarrow {AB} \) khác vectơ \(\overrightarrow {BA} \) (khác nhau điểm đầu và điểm cuối).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Các làn đường song song với nhau: Đúng.

b) Các xe chạy theo cùng một hướng: Sai.

Trong hình 4.5: Có 3 xe chạy theo hướng từ trên xuống dưới, 2 xe chạy thep hướng từ dưới lên trên

c) Hai xe bất kì đều chạy theo cùng một hướng hoặc hai hướng ngược nhau: Đúng.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Hai vectơ \(\overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng: có giá song song và cùng hướng với nhau.

Hai vectơ \(\overrightarrow a \) và \(\overrightarrow x \) ngược hướng: có giá song song và ngược hướng với nhau.

Vectơ \(\overrightarrow z \) có giá song song với giá của vectơ \(\overrightarrow a \), ngược hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow z \) ngược hướng với nhau.

Vectơ \(\overrightarrow y \) có giá song song với giá của vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow y \) cùng hướng với nhau.

Vectơ \(\overrightarrow b \) có giá không song song với giá của vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương với nhuau. Do vậy không xét chúng cùng hướng hay ngược hướng với nhau.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (2)

Dễ thấy:

\(AD = BC\) nhưng \(AD\) và \(BC\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) không bằng nhau.

\(CD > AB\) do đó hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.

\(AC\) và \(BD\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không bằng nhau.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (2)

Tham khảo:

a)  \(\overrightarrow {AB} \) và \(\overrightarrow {AM} \) ngược hướng

\( \Leftrightarrow \left\{ \begin{array}{l}AB//AM\\B \; \text {và}\;  M \; \text {nằm cùng phía so với điểm A}\end{array} \right.\)

\( \Leftrightarrow \) A, B, thẳng hàng và A nằm giữa B và M

b) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) cùng phương

TH1: \(MA < MB\)

 M, A, B thẳng hàng & A nằm giữa M và B.

TH2: \(MA > MB\)

M, A, B thẳng hàng & B nằm giữa M và A.

c) \(\overrightarrow {AB} \) và \(\overrightarrow {AM} \) cùng hướng

TH1: \(AM < AB\)

A, M, B thẳng hàng & M nằm giữa A và B.

TH2: \(AB < AM\)

A, M, B thẳng hàng & B nằm giữa A và M.

d) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) ngược hướng

\( \Leftrightarrow \left\{ \begin{array}{l}MA//MB\\A \; \text {và} \; B\; \text {nằm về hai phía so với điểm M}\end{array} \right.\)

\( \Leftrightarrow \) A, M, B thẳng hàng & M nằm giữa A và B.

Vậy điều kiện cần và đủ để M nằm giữa A và B là d) \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \) ngược hướng

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

Tham khảo:

Gọi \(\overrightarrow a ,\overrightarrow b \) lần lượt là vectơ vận tốc riêng của ca nô A và B (cùng độ lớn).

Vì ca no A chạy xuôi dòng nên ngoài vận tốc riêng của ca nô, ca nô A còn được đẩy đi bởi vận tốc của dòng nước. Do đó vectơ vận tốc thực của cano A cùng hướng với vectơ \(\overrightarrow a \) và có độ lớn bằng tổng của vận tốc riêng và vận tốc dòng nước, là 18 km/h.

Ngược lại, ca nô đi ngược dòng nên bị cản lại một phần bởi dòng nước. Vì vận tốc của dòng nước nhỏ hơn vận tốc riêng của cano B nên vectơ vận tốc thực của cano B cùng hướng với vectơ \(\overrightarrow b \) và có độ lớn bằng hiệu giữa vận tốc riêng và vận tốc dòng nước, là 12 km/h.

Ta biểu diễn vận tốc thực của ca nô A và ca nô B như sau:

 

b) Dễ thấy:

Các vectơ \(\overrightarrow v ,\overrightarrow {{v_A}} ,\overrightarrow {{v_B}} \) đều có giá song song nên chúng cùng phương với nhau.

Ca nô A đi xuôi dòng nên vectơ vận tốc thực của ca nô A cùng hướng với vectơ vận tốc dòng nước.

Hay \(\overrightarrow v \) và \(\overrightarrow {{v_A}} \) cùng hướng.

Ca nô A đi ngược dòng nên vectơ vận tốc thực của ca nô B ngược hướng với vectơ vận tốc dòng nước.

Hay \(\overrightarrow v \) và \(\overrightarrow {{v_B}} \) ngược hướng.

Chú ý khi giải

Vận tốc riêng của cano là vận tốc của cano khi dòng nước đứng im.

Vận tốc thực của cano là vận tốc của cano khi kết hợp với dòng nước (đang chảy)

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

Tham khảo:

a) Đúng vì vectơ \(\overrightarrow 0 \) cùng hướng với mọi vectơ.

b) Sai. Chẳng hạn: Hai vecto không cùng hướng nhưng cũng không ngược hướng (do chúng không cùng phương).

 

c) Đúng.

 \(\overrightarrow a \) và \(\overrightarrow b \) đều cùng phương với \(\overrightarrow c \) thì a // c và b // c do đó a // b tức là \(\overrightarrow a \)và \(\overrightarrow b \) cùng phương.

d) Đúng.

\(\overrightarrow a \) và \(\overrightarrow b \) đều cùng hướng với \(\overrightarrow c \) thì \(\overrightarrow a \)và \(\overrightarrow b \) cùng phương , cùng chiều đo đó cùng hướng.

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

Dễ thấy giá của \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) song song với nhau.

Các vecto cùng phương là: \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)

Trong đó cặp vecto cùng hướng là \(\overrightarrow a ,\overrightarrow c \).

Cặp vecto ngược hướng là: \(\overrightarrow a ,\overrightarrow b \) và \(\overrightarrow b ,\overrightarrow c \).

Cặp vecto bằng nhau là: \(\overrightarrow a ,\overrightarrow c \)

Trả lời bởi Hà Quang Minh