Làm thế nào để biểu diễn sự bằng nhau của ba tỉ số \(\frac{1}{2};\frac{2}{4};\frac{3}{6}\)?
Làm thế nào để biểu diễn sự bằng nhau của ba tỉ số \(\frac{1}{2};\frac{2}{4};\frac{3}{6}\)?
So sánh từng cặp tỉ số trong ba tỉ số sau: \(\frac{4}{6};\frac{8}{{12}};\frac{{ - 10}}{{ - 15}}\)
Vì 4.12 = 6.8 nên \(\frac{4}{6} = \frac{8}{{12}}\)
Vì 8.(-15) = 12. (-10) nên \(\frac{8}{{12}} = \frac{{ - 10}}{{ - 15}}\)
Vì 4.(-15) = 6.(-10) nên \(\frac{4}{6} = \frac{{ - 10}}{{ - 15}}\)
Trả lời bởi Hà Quang MinhViết dãy tỉ số bằng nhau từ các tỉ số:
\(\frac{1}{4};\frac{8}{{32}};\frac{{13}}{{54}};\frac{{ - 9}}{{ - 36}}\)
Ta có:
\(\begin{array}{l}\frac{8}{{32}} = \frac{{8:8}}{{32:8}} = \frac{1}{4};\\\frac{{13}}{{54}};\\\frac{{ - 9}}{{ - 36}} = \frac{{( - 9):( - 9)}}{{( - 36):( - 9)}} = \frac{1}{4}\end{array}\)
Như vậy, ta có dãy tỉ số bằng nhau là: \(\frac{1}{4} = \frac{8}{{32}} = \frac{{ - 9}}{{ - 36}}\).
Trả lời bởi Hà Quang Minha) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
Trả lời bởi Hà Quang MinhTìm hai số x,y biết:
x : 1,2 = y : 0,4 và x – y = 2.
Vì x : 1,2 = y : 0,4 nên \(\frac{x}{{1,2}} = \frac{y}{{0,4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,2}} = \frac{y}{{0,4}} = \frac{{x - y}}{{1,2 - 0,4}} = \frac{2}{{0,8}} = 2,5\)
Vậy x = 1,2 . 2,5 = 3; y = 0,4 . 2,5 = 1
Trả lời bởi Hà Quang MinhTìm ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 và x – y – z = 2.
Vì ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 nên \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{x - y - z}}{{2 - 3 - 4}} = \frac{2}{{ - 5}} = \frac{{ - 2}}{5}\)
Vậy \(x = 2.\frac{{ - 2}}{5} = \frac{{ - 4}}{5};y = 3.\frac{{ - 2}}{5} = \frac{{ - 6}}{5};z = 4.\frac{{ - 2}}{5} = \frac{{ - 8}}{5}\)
Trả lời bởi Hà Quang MinhBa máy bơm cùng bơm nước vào một bể bơi không có nước, có dạng hình hộp chữ nhật, với các kích thước bể là 12 m; 10 m; 1,2 m. Lượng nước mà ba máy bơm được tỉ lệ với 3 số 7;8;9. Mỗi máy cần bơm bao nhiêu mét khối nước để đầy bể bơi?
Thể tích bể bơi là:
V = 12.10.1,2 = 144 (m3)
Gọi lượng nước mà mỗi máy cần bơm lần lượt là: x,y,z (m3) (x,y,z > 0) thì tổng lượng nước 3 máy cần bơm là: x + y + z = 144
Vì lượng nước mà ba máy bơm được tỉ lệ với 3 số 7;8;9 nên \(\frac{x}{7} = \frac{y}{8} = \frac{z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7} = \frac{y}{8} = \frac{z}{9} = \frac{{x + y + z}}{{7 + 8 + 9}} = \frac{{144}}{{24}} = 6\)
\( \Rightarrow x = 7.6 = 42;y = 8.6 = 48;z = 9.6 = 54\)(thỏa mãn)
Vậy lượng nước mà mỗi máy cần bơm lần lượt là: 42 m3; 48 m3 và 54 m3
Trả lời bởi Hà Quang MinhCho tỉ lệ thức \(\frac{x}{7} = \frac{y}{2}\). Tìm hai số x,y biết:
a) x + y = 18; b) x – y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{7} = \frac{y}{2} = \frac{{x + y}}{{7 + 2}} = \frac{{18}}{9} = 2\)
Vậy x = 7 . 2 = 14; y = 2.2 = 4
b) \(\frac{x}{7} = \frac{y}{2} = \frac{{x - y}}{{7 - 2}} = \frac{{20}}{5} = 4\)
Vậy x = 7.4 = 28; y = 2.4 = 8
Trả lời bởi Hà Quang MinhCho dãy tỉ số bằng nhau \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\). Tìm ba số x,y,z biết:
a) x+y+z = 180; b) x + y – z = 8
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Trả lời bởi Nguyễn Lê Phước ThịnhCho ba số x,y,z sao cho \(\frac{x}{3} = \frac{y}{4};\frac{y}{5} = \frac{z}{6}\)
a) Chứng minh: \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\)
b) Tìm ba số x,y,z biết x – y + z = - 76
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
Trả lời bởi Hà Quang Minh
Ta dùng dấu "=" giữa các tỉ số để biểu diễn sự bằng nhau của chúng.
Ta viết là: \(\frac{1}{2} = \frac{2}{4} = \frac{3}{6}\).
Trả lời bởi Hà Quang Minh