Bài 3: Phương trình mặt cầu

H24
Hướng dẫn giải Thảo luận (1)

Ta có \(\overrightarrow {MA}  = \left( {1 - x;y;z} \right)\) và \(\overrightarrow {MB}  = \left( {5 - x;y;z} \right)\).

Do \(\overrightarrow {MA} .\overrightarrow {MB}  = 0\) nên

\(\begin{array}{l}\left( {1 - x} \right)\left( {5 - x} \right) + {y^2} + {z^2} = 0\\ \Rightarrow {x^2} - 6x + 5 + {y^2} + {z^2} = 0\\ \Rightarrow \left( {{x^2} - 6x + 9} \right) + {y^2} + {z^2} = 4\\ \Rightarrow {\left( {x - 3} \right)^2} + {y^2} + {z^2} = 4\end{array}\)

Vậy điểm \(M\left( {x;y;z} \right)\) thuộc mặt cầu \(S\) có tâm \(I\left( {3;0;0} \right)\) và bán kính \(R = \sqrt 4  = 2\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Phương trình mặt cầu tâm \(I\left( {360;200;400} \right)\), bán kính \(R = 2\) là

\({\left( {x - 360} \right)^2} + {\left( {y - 200} \right)^2} + {\left( {z - 400} \right)^2} = 4\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Phương trình bề mặt bồn chứa là \(\left( S \right):{\left( {x - 6} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 6} \right)^2} = 25\), nên bồn chứa là một hình cầu có tâm \(I\left( {6;6;6} \right)\) và bán kính \(R = \sqrt {25}  = 5\).

b) Khoảng cách từ tâm bồn chứa \(I\left( {6;6;6} \right)\) đến mặt phẳng chứa nắp \(\left( P \right):z - 10 = 0\) là \(d = \frac{{\left| {0.6 + 0.6 + 1.6 - 10} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 4\).

Trả lời bởi datcoder