Xét hàm số \(y = {x^3} - 4{x^2} + 5\)
a) Tìm \(y'\)
b) Tìm đạo hàm của hàm số \(y'\)
Xét hàm số \(y = {x^3} - 4{x^2} + 5\)
a) Tìm \(y'\)
b) Tìm đạo hàm của hàm số \(y'\)
Tìm đạo hàm cấp hai của hàm số \(y = \sin 3x\)
Một vật rơi tự do theo phương thẳng đứng có phương trình \(s = \frac{1}{2}g{t^2}\), trong đó g là gia tốc rơi tự do, \(g \approx 9,8m/{s^2}\)
a) Tính vận tốc tức thời v(t) tại thời điểm \({t_0} = 4(s);{t_1} = 4,1(s)\)
b) Tính tỉ số \(\frac{{\Delta v}}{{\Delta t}}\) trong khoảng thời gian \(\Delta t = {t_1} - {t_0}\)
a, Phương trình vận tốc v(t) = s'(t) = gt
Vận tốc tức thời tại thời điểm t0 = 4(s) là: \(v\left(4\right)=39,2\left(m/s\right)\)
Vận tốc tức thời tại thời điểm t0 = 4,1s) là: \(v\left(4,1\right)=40,18\left(m/s\right)\)
b, Tỉ số \(\dfrac{\Delta v}{\Delta t}=\dfrac{40,18-39,2}{4,1-4}=9,8\)
Trả lời bởi Hà Quang MinhTìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = \frac{1}{{2x + 3}}\)
b) \(y = {\log _3}x\)
c) \(y = {2^x}\)
\(a,y'=\left(\dfrac{1}{2x+3}\right)'=-\dfrac{2}{\left(2x+3\right)^2}\\ \Rightarrow y''=\dfrac{2\cdot\left[\left(2x+3\right)^2\right]'}{\left(2x+3\right)^4}=\dfrac{8}{\left(2x+3\right)^3}\\ b,y'=\left(log_3x\right)'=\dfrac{1}{xln3}\\ \Rightarrow y''=-\dfrac{1}{x^2ln3}\\ c,y'=\left(2^x\right)'=2^x\cdot ln2\\ \Rightarrow y''=2^x\cdot\left(ln2\right)^2\)
Trả lời bởi Hà Quang MinhTìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 3{x^2} - 4x + 5\) tại điểm \({x_0} = - 2\)
b) \(y = {\log _3}(2x + 1)\) tại điểm \({x_0} = 3\)
c) \(y = {e^{4x + 3}}\) tại điểm \({x_0} = 1\)
d) \(y = \sin \left( {2x + \frac{\pi }{3}} \right)\) tại điểm \({x_0} = \frac{\pi }{6}\)
e) \(y = \cos \left( {3x - \frac{\pi }{6}} \right)\) tại điểm \({x_0} = 0\).
a,
\(y' = 6x - 4 \Rightarrow y'' = 6\)
Tại \({x_0} = - 2 \Rightarrow y''( - 2) = 6\)
b,
\(\begin{array}{l}y' = \frac{2}{{\left( {2x + 1} \right)\ln 3}}\\ \Rightarrow y'' = \left( {2.\frac{1}{{\left( {\left( {2x + 1} \right)\ln 3} \right)}}} \right)' = - 2.\frac{{\left( {\left( {2x + 1} \right)\ln 3} \right)'}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}}\\ = - 2\frac{{2\ln 3}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}} = \frac{{ - 4\ln 3}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}}\end{array}\)
Tại \({x_0} = 3 \Rightarrow y''(3) = \frac{{ - 4\ln 3}}{{{{\left( {\left( {2.3 + 1} \right)\ln 3} \right)}^2}}} = \frac{{ - 4\ln 3}}{{{{\left( {7\ln 3} \right)}^2}}} = \frac{{ - 4}}{{49\ln 3}}\)
c, \(y' = 4{e^{4x + 3}} \Rightarrow y'' = 16{e^{4x + 3}}\)
Tại \({x_0} = 1 \Rightarrow y''(1) = 16.{e^{4.1 + 3}} = 16.{e^7}\)
d,
\(y' = 2\cos \left( {2x + \frac{\pi }{3}} \right) \Rightarrow y'' = - 4\sin \left( {2x + \frac{\pi }{3}} \right)\)
Tại \({x_0} = \frac{\pi }{6} \Rightarrow y''\left( {\frac{\pi }{6}} \right) = - 4\sin \left( {2.\frac{\pi }{6} + \frac{\pi }{3}} \right) = - 2\sqrt 3 \)
e,
\(y' = - 3.\sin \left( {3x - \frac{\pi }{6}} \right) \Rightarrow y'' = - 9.\cos \left( {3x - \frac{\pi }{6}} \right)\)
Tại \({x_0} = 0 \Rightarrow y''(0) = - 9.\cos \left( {3.0 - \frac{\pi }{6}} \right) = \frac{{ - 9\sqrt 3 }}{2}\)
Trả lời bởi Hà Quang MinhMột vật rơi tự do theo phương thẳng đứng có phương trình \(s = \frac{1}{2}g{t^2}\), trong đó g là gia tốc rơi tự do, \(g \approx 9,8m/{s^2}\)
a) Tính vận tốc tức thời của vật tại thời điểm \({t_0} = 2(s)\)
b) Tính gia tốc tức thời của vật tại thời điểm \({t_0} = 2(s)\)
Phương trình vận tốc của vật là: v(t) = s'(t) = gt
Phương trình gia tốc của vật là: a(t) = v'(t) = g = 9,8 m/s2
a, Vận tốc tại thời điểm t0 = 2(s) = \(9,8\cdot2=19,6\left(m/s\right)\)
b, Gia tốc của vật tại mọi thời điểm là a = g = 9,8 m/s2
Trả lời bởi Hà Quang MinhMột chất điểm chuyển động theo phương trình \(s(t) = {t^3} - 3{t^2} + 8t + 1\), trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tìm vận tốc tức thời, gia tốc tức thời của chất diểm;
a) Tại thời điểm t = 3(s)
b) Tại thời điểm mà chất điểm di chuyển được 7 (m)
a, Phương trình vận tốc là: v(t) = \(3t^2-6t+8\)
Phương trình gia tốc là: a(t) = \(6t-6\)
Thay t = 3 vào phương trình, ta được:
s = \(3^3-3\cdot3^3+8\cdot3+1=25\left(m\right)\)
\(v=3\cdot3^2-6\cdot3+8=17\left(m/s\right)\\ s=6\cdot3-6=12\left(m/s^2\right)\)
b, Theo đề bài, ta có:
\(t^3-3t^2+8t+1=7\\ \Leftrightarrow t^3-3t^2+8t-6=0\\ \Leftrightarrow\left(t-1\right)\left(t^2-2t+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=1\\t^2-2t+6=0\left(vô.nghiệm\right)\end{matrix}\right.\)
Khi t = 1(s), chất điểm đi được 7m
\(v=3\cdot1^2-6\cdot1+8=5\left(m/s\right)\\ a=6\cdot1-6=0\left(m/s^2\right)\)
Trả lời bởi Hà Quang MinhMột con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát như Hình 7 , có phương trình chuyển động \(x = 4\sin t\), trong đó t tính bằng giây và x tính bằng centimet.
a) Tìm vận tốc tức thời và gia tốc tức thời của con lắc tại thời điểm t (s)
b) Tìm vị trí, vận tốc tức thời và gia tốc tức thời của con lắc tại thời điểm \(t = \frac{{2\pi }}{3}(s)\)
Tại thời điểm đó, con lắc di chuyển theo hướng nào?
a: Vận tốc tức thời là:
\(v\left(t\right)=x'=4\cdot cost\)
Gia tốc tức thời là:
\(a\left(t\right)=v'=-4\cdot sint\)
b: \(v\left(\dfrac{2}{3}pi\right)=4\cdot cos\left(\dfrac{2}{3}\cdot pi\right)=-2\)
\(a\left(\dfrac{2}{3}pi\right)=-4\cdot sin\left(\dfrac{2}{3}pi\right)=-2\sqrt{3}\)
Con lắc lúc đó đang di chuyển theo hướng ngược chiều dương
Trả lời bởi Nguyễn Lê Phước Thịnh
\(a,y'=\left(x^3-4x^2+5\right)'=3x^2-8x\\ b,y''=\left(3x^2-8x\right)'=6x-8\)
Trả lời bởi Hà Quang Minh