Bài 3. Cấp số nhân

QL
Hướng dẫn giải Thảo luận (1)

a)    Ta có: \({u_3} = {u_1}.{q^2} \Leftrightarrow \left( {\frac{{27}}{4}} \right) = 3.{q^2} \Leftrightarrow q = \frac{3}{2}\)

Năm số hạng đầu của cấp số nhân: \(3;\frac{9}{2};\frac{{27}}{4};\frac{{81}}{8};\frac{{243}}{{16}}\)

b)    Tổng 10 số hạng đầu:

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{3\left( {1 - {{\left( {\frac{3}{2}} \right)}^{10}}} \right)}}{{1 - \frac{3}{2}}} = \frac{{3.\frac{{ - 58025}}{{1024}}}}{{1 - \frac{3}{2}}} = \frac{{ - 174075}}{{1024}}.\left( { - 2} \right) = \frac{{174075}}{{512}}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)    Công thức tính dân số của tỉnh đó: \({S_n} = {u_1}{.1,01^n}\)

b)    Dân số của tính đó sau 10 năm:

\({S_{10}} = {2.1,01^{10}} \approx 2,21\) (triệu dân)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)    Công thức tính giá trị của ô tô:

-        Sau 1 năm: \(800 - 800.4\%  = 768\) (triệu đồng)

-        Sau 2 năm: \(768 - 768.4\%  = 737,28\) (triệu đồng)

b)    Công thức tính giá trị của ô tô sau n năm sử dụng: \({S_n} = 800{\left( {1 - 0,04} \right)^n}\)

c)    Sau 10 năm, giá trị của ô tô ước tính còn: \({S_{10}} = 800{\left( {1 - 0,04} \right)^{10}} \approx 531,87\) (triệu đồng)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Quãng đường người đó đi được sau n lần kéo là: \(100.{\left( {1 - 0,25} \right)^n}\)

Quãng đường người đó đi được sau 10 lần kéo là: \(100.{\left( {1 - 0,25} \right)^{10}} \approx 5,63\,\,\left( m \right)\)

Trả lời bởi Hà Quang Minh