Bài 29. Công thức cộng xác suất

H24
Hướng dẫn giải Thảo luận (1)

Gọi A là biến cố “Bạn đó thích nhạc cổ điển”, B là biến cố “Bạn đó thích nhạc trẻ”, C là biến cố “Bạn đó không thích cả nhạc cổ điển và nhạc trẻ”.

a) Xác suất bạn đó thích nhạc cổ điển là \(P\left( A \right) = \frac{{14}}{{40}} = \frac{7}{{20}}\)

Xác suất bạn đó thích nhạc trẻ là \(P\left( B \right) = \frac{{13}}{{40}}\)

Xác suất bạn đó thích cả nhạc cổ điển và nhạc trẻ là \(P\left( C \right) = \frac{5}{{40}} = \frac{1}{8}\)

Xác suất bạn đó thích nhạc cổ điển hoặc nhạc trẻ là

 \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{7}{{20}} + \frac{{13}}{{40}} - \frac{1}{8} = \frac{{11}}{{20}}\)

b) Ta có \(\overline C  = A \cup B\) nên xác suất để bạn đó không thích cả nhạc cổ điển và nhạc trẻ là

\(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - P\left( {A \cup B} \right) = 1 - \frac{{11}}{{20}} = \frac{9}{{20}}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Gọi A là biến cố “Hộ đó nuôi chó”, B là biến cố “Hộ đó nuôi mèo”, C là biến cố “Hộ đó không nuôi cả chó và mèo”.

a) Xác suất hộ đó nuôi chó là \(P\left( A \right) = \frac{{18}}{{50}} = \frac{9}{{25}}\)

Xác suất hộ đó nuôi mèo là \(P\left( B \right) = \frac{{16}}{{50}} = \frac{8}{{25}}\)

Xác suất hộ đó nuôi cả chó và mèo là \(P\left( C \right) = \frac{7}{{50}}\)

Xác suất để hộ đó nuôi chó hoặc nuôi mèo là

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{9}{{25}} + \frac{8}{{25}} - \frac{7}{{50}} = \frac{{27}}{{50}}\)

b) Ta có \(\overline C  = A \cup B\) nên xác suất để hộ đó không nuôi cả chó và mèo là

\(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - P\left( {A \cup B} \right) = 1 - \frac{{27}}{{50}} = \frac{{23}}{{50}}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a) Gọi A là biến cố “Người mua sách A”; B là biến cố “Người mua sách B”; E là biến cố “Người đó không mua cả sách A và sách B”.

Khi đó \(\overline E \) là biến cố “Người đó mua sách A hoặc sách B”.

Ta có \(\overline E  = A \cup B.\)

\(P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 50\%  + 70\%  - 30\%  = 90\% \)

Vậy xác suất để người mua đó mua ít nhất một trong hai sách A hoặc B là \(90\% \)

b) Ta có \(P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - 90\%  = 10\% \)

Vậy xác suất để người mua đó không mua cả sách A và sách B là 10%.

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Gọi A là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa A”; B là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa B”; E là biến cố “Giáo viên môn Toán không tham khảo cả hai bộ sách giáo khoa A và B”.

Khi đó \(\overline E \) là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa A hoặc B”.

Ta có \(\overline E  = A \cup B.\)

\(\begin{array}{l}P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 63\%  + 56\%  - 28,5\%  = 90,5\% \\ \Rightarrow P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - 90,5\%  = 9,5\% \end{array}\)

Vậy tỉ lệ giáo viên môn Toán các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B là 9,5%.

Trả lời bởi Quoc Tran Anh Le