Cho biết hệ số và bậc của mỗi đơn thức sau:
a) 2.x6; b) \( - \dfrac{1}{5}.{x^2}\) c) -8; d) 32.x
Cho biết hệ số và bậc của mỗi đơn thức sau:
a) 2.x6; b) \( - \dfrac{1}{5}.{x^2}\) c) -8; d) 32.x
Khi nhân một đơn thức bậc 3 với một đơn thức bậc 2, ta được đơn thức bậc mấy?
Giả sử hai đơn thức đã cho có biến x
Đơn thức bậc 3 có dạng: a.x3
Đơn thức bậc 2 có dạng: b.x2
Nhân 2 đơn thức trên, ta được đơn thức a.x3.b.x2 = (a.b).(x3.x2) = (a.b).x3+2= (a.b). x5
Vậy ta thu được đơn thức bậc 5.
Trả lời bởi Hà Quang MinhTính: \(a)5{x^3} + {x^3};b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5};c)( - 0,25{x^2}).(8{x^3})\)
\(\begin{array}{l}a)5{x^3} + {x^3} = (5 + 1){x^3} = 6{x^3}\\b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5} = \left( {\dfrac{7}{4} - \dfrac{3}{4}} \right){x^5} = \dfrac{4}{4}{x^5} = {x^5}\\c)( - 0,25{x^2}).(8{x^3}) = ( - 0,25.8).({x^2}.{x^3}) = - 2.{x^5}\end{array}\)
Trả lời bởi Hà Quang MinhMỗi số thực có phải một đa thức không? Tại sao?
Vì một số thực là một đơn thức. Mà 1 đơn thức cũng là một đa thức nên mỗi số thực cũng là một đa thức
Trả lời bởi Hà Quang MinhHãy liệt kê các hạng tử của đa thức \(B = 2{x^4} - 3{x^2} + x + 1\)
Các hạng tử của B là: 2x4; -3x2; x ; 1
Trả lời bởi Hà Quang MinhThu gọn đa thức: \(P = 2{x^3} - 5{x^2} + 4{x^3} + 4x + 9 + x\)
\(\begin{array}{l}P = 2{x^3} - 5{x^2} + 4{x^3} + 4x + 9 + x\\ = \left( {2{x^3} + 4{x^3}} \right) - 5{x^2} + \left( {4x + x} \right) + 9\\ = 6{x^3} - 5{x^2} + 5x + 9\end{array}\)\(\)
Trả lời bởi Hà Quang MinhThu gọn ( nếu cần) và sắp xếp mỗi đa thức sau theo lũy thừa giảm dần của biến:
\(\begin{array}{l}a)A = 3x - 4{x^4} + {x^3};\\b)B = - 2{x^3} - 5{x^2} + 2{x^3} + 4x + {x^2} - 5\\c)C = {x^5} - \dfrac{1}{2}{x^3} + \dfrac{3}{4}x - {x^5} + 6{x^2} - 2\end{array}\)
\(\begin{array}{l}a)A = 3x - 4{x^4} + {x^3}\\ = - 4{x^4} + {x^3} + 3x\\b)B = - 2{x^3} - 5{x^2} + 2{x^3} + 4x + {x^2} - 5\\ = ( - 2{x^3} + 2{x^3}) + \left( { - 5{x^2} + {x^2}} \right) + 4x - 5\\ = 0 + ( - 4{x^2}) + 4x - 5\\ = - 4{x^2} + 4x - 5\\c)C = {x^5} - \dfrac{1}{2}{x^3} + \dfrac{3}{4}x - {x^5} + 6{x^2} - 2\\ = \left( {{x^5} - {x^5}} \right) - \dfrac{1}{2}{x^3} + 6{x^2} + \dfrac{3}{4}x - 2\\ = - \dfrac{1}{2}{x^3} + 6{x^2} + \dfrac{3}{4}x - 2\end{array}\)
Trả lời bởi Hà Quang MinhXét đa thức \(P = - 3{x^4} + 5{x^2} - 2x + 1\). Đó là một đa thức thu gọn. Hãy quan sát các hạng tử ( các đơn thức) của đa thức P và trả lời các câu hỏi sau:
Trong P, bậc của hạng tử 5x2 là 2 ( số mũ của x2). Hãy xác định bậc của các hạng tử trong P.
Bậc của hạng tử -3x4 là 4 ( số mũ của x4)
Bậc của hạng tử -2x là 1 ( số mũ của x)
Bậc của 1 là 0
Trả lời bởi Hà Quang MinhXét đa thức \(P = - 3{x^4} + 5{x^2} - 2x + 1\). Đó là một đa thức thu gọn. Hãy quan sát các hạng tử (các đơn thức) của đa thức P và trả lời các câu hỏi sau:
Trong P, hạng tử nào có bậc cao nhất? Tìm hệ số và bậc của hạng tử đó.
Xét đa thức \(P = - 3{x^4} + 5{x^2} - 2x + 1\). Đó là một đa thức thu gọn. Hãy quan sát các hạng tử (các đơn thức) của đa thức P và trả lời các câu hỏi sau:
Trong P, hạng tử nào có bậc bằng 0?
Trong P, hạng tử 1 có bậc bằng 0.
Trả lời bởi Hà Quang Minh
a) Hệ số: 2
Bậc: 6
b) Hệ số:\( - \dfrac{1}{5}\)
Bậc: 2
c) Hệ số: -8
Bậc: 0
d) Hệ số: 9 ( vì 32 = 9)
Bậc: 1
Chú ý: Đơn thức chỉ gồm số thực khác 0 có bậc là 0
Trả lời bởi Hà Quang Minh