Bài 2: Hệ bất phương trình bậc nhất hai ẩn

QL
Hướng dẫn giải Thảo luận (1)

Tham khảo:

Gọi x, y lần lượt là số giờ đạp xe và tập tạ trong một tuần.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-  Hiển nhiên \(x \ge 0,y \ge 0\)

-  Số giờ tập thể dục tối đa là 12 giờ nên \(x + y \le 12\)

-  Tổng số calo tiêu hao một tuần không quá 7000 calo nên \(350x + 700y \le 7000\)

Từ đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x + y \le 12\\350x + 700y \le 7000\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy, ta được như hình dưới.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình.

Với các đỉnh  \(O(0;0),\)\(A(0;10),\)\(B(4;8),\)\(C(12;0).\)

a) Gọi F là chi phí luyện tập (đơn vị: nghìn đồng), ta có: \(F = 50y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 50.0 = 0\)

Tại \(A(0;10),\)\(F = 50.10 = 500\)

Tại \(B(4;8),\)\(F = 50.8 = 400\)

Tại \(C(12;0).\)\(F = 50.0 = 0\)

F đạt giá trị nhỏ nhất bằng 0 tại \(O(0;0),\)\(C(12;0).\)

Vậy bạn Mạnh cần đạp xe 12 giờ hoặc không tập thể dục..

b) Gọi T là lượng calo tiêu hao (đơn vị: calo), ta có: \(T = 350x + 700y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(T = 350.0 + 700.0 = 0\)

Tại \(A(0;10),\)\(T = 350.0 + 700.10 = 7000\)

Tại \(B(4;8),\)\(T = 350.4 + 700.8 = 7000\)

Tại \(C(12;0),\)\(T = 350.12 + 700.0 = 4200\)

T đạt giá trị lớn nhất bằng 7000 tại \(A(0;10),\)\(B(4;8).\)

Vậy bạn Mạnh có thể chọn một trong hai phương án: Tập tạ 10 giờ hoặc đạp xe 4 tiếng và tập tạ 8 tiếng.

Trả lời bởi Kiều Sơn Tùng