Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn

HM
Hướng dẫn giải Thảo luận (1)

Khối lượng riêng của dung dịch HCl là 1,49 g/cm3

Đổi 2l = 2000ml

Khối lượng mol của HCl: 36,5 g/mol

a) Thể tích của dung dịch HCl 10% nhận được sau khi trộn lẫn hai dung dịch acid ban đầu là 2 lít nên ta có phương trình: \(x + y = 2000\left( {ml} \right).\)

Tổng số gam HCl nguyên chất sau pha là: \(36,5.0,008.x{.10^{ - 3}} + 36,5.0,002y{.10^{ - 3}} = 36,5.0,008\) hay \(36,5.0,008.x{.10^{ - 3}} + 36,5.0,002y{.10^{ - 3}} = 0,292\) (gam)

b) Từ câu a ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 2000\\0,{008.10^{ - 3}}.36,5.x + 0,{002.10^{ - 3}}.36,5y = 0,292\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y = 2000\\4x + y = 4000\end{array} \right.\)

Từ phương trình đầu ta có \(x = 2000 - y\) thay vào phương trình thứ hai ta được \(4\left( {2000 - y} \right) + y = 4000\) suy ra \(8000 - 3y = 4000\) nên \(y = \frac{{4000}}{3}.\) Thế \(y = \frac{{4000}}{3}\) vào phương trình thứ nhất ta được \(x = \frac{{2000}}{3}.\)

Vậy cần lấy \(\frac{{2000}}{3}\left( {ml} \right)\) dung dịch HCl 20% và \(\frac{{4000}}{3}\left( {ml} \right)\) dung dịch HCl 5%. 

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

a) \(\left\{ \begin{array}{l}x - y = 3\\3x - 4y = 2;\end{array} \right.\)

Từ phương trình đầu ta có \(x = 3 + y\) thế vào phương trình thứ hai ta được \(3\left( {3 + y} \right) - 4y = 2\) suy ra \(9 - y = 2\) nên \(y = 7.\) Thế \(y = 7\) vào phương trình đầu ta có \(x = 10.\)

Vậy nghiệm của hệ phương trình là \(\left( {10;7} \right).\)

b) \(\left\{ \begin{array}{l}7x - 3y = 13\\4x + y = 2;\end{array} \right.\)

Từ phương trình thứ hai ta có \(y = 2 - 4x\) thế vào phương trình đầu ta được \(7x - 3\left( {2 - 4x} \right) = 13\) suy ra \( - 6 + 19x = 13\) nên \(x = 1.\) Thế \(x = 1\) vào phương trình thứ hai ta có \(y =  - 2.\)

Vậy nghiệm của hệ phương trình là \(\left( {1; - 2} \right).\)

c) \(\left\{ \begin{array}{l}0,5x - 1,5y = 1\\ - x + 3y = 2.\end{array} \right.\)

Từ phương trình thứ hai ta có \(x = 3y - 2\) thế vào phương trình đầu ta được \(0,5\left( {3y - 2} \right) - 1,5y = 1\) suy ra \(0y - 1 = 1\) hay \(0y = 2\) (vô lí) . Phương trình này không có giá trị nào của y thỏa mãn.

Vậy hệ phương trình vô nghiệm. 

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( {3x + 2y} \right) + \left( {2x - 2y} \right) = 6 + 14\) nên \(5x = 20\) suy ra \(x = 4.\)

Thế \(x = 4\) vào phương trình thứ nhất ta được \(3.4 + 2y = 6\) nên \(2y =  - 6\) suy ra \(y =  - 3.\)

Vậy nghiệm của hệ phương trình là \(\left( {4; - 3} \right)\).

b) \(\left\{ \begin{array}{l}0,5x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)

Nhân cả hai vế của phương trình thứ nhất với 3 ta được \(1,5x + 1,5y = 9,\) vậy hệ đã cho trở thành \(\left\{ \begin{array}{l}1,5x + 1,5y = 9\\1,5x - 2y = 1,5;\end{array} \right.\)

Trừ từng vế của hai phương trình ta có \(\left( {1,5x + 1,5y} \right) - \left( {1,5x - 2y} \right) = 9 - 1,5\) nên \(3,5y = 7,5\) suy ra \(y = \frac{{15}}{7}.\)

Thế \(y = \frac{{15}}{7}\) vào phương trình thứ hai ta được \(1,5x - 2.\frac{{15}}{7} = 1,5\) nên \(1,5x = \frac{{81}}{7}\) suy ra \(x = \frac{{27}}{7}.\)

Vậy nghiệm của hệ phương trình là \(\left( {\frac{{27}}{7};\frac{{15}}{7}} \right)\).

c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y =  - 12.\end{array} \right.\)

Nhân cả hai vế của phương trình thứ nhất với \(\frac{1}{2}\) ta được \( - x + 3y = 4,\) nhân cả hai vế của phương trình thứ hai với \(\frac{1}{3}\) ta được \(x - 3y =  - 4.\)

Vậy hệ đã cho trở thành \(\left\{ \begin{array}{l} - x + 3y = 4\\x - 3y =  - 4\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( { - x + 3y} \right) + \left( {x - 3y} \right) = 4 + \left( { - 4} \right)\) nên \(0x + 0y = 0\) (luôn đúng) .

Ta thấy phương trình luôn đúng với x tùy ý và y tùy ý. Với giá trị tùy ý của y, giá trị của x được tính bởi phương trình \( - x + 3y = 4,\) suy ra \(x = 3y - 4\) nên hệ phương trình đã cho có nghiệm \(\left( {3y - 4;y} \right)\) với \(y \in \mathbb{R}\). 

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

a) Thay \(m =  - 2\) vào hệ phương trình đã cho ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 8x + 9y = 3\end{array} \right.\)

Nhân cả hai vế của phương trình thứ nhất với 4, ta được \(8x - 4y =  - 12,\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}8x - 4y =  - 12\\ - 8x + 9y = 3\end{array} \right..\)

Cộng từng vế của hai phương trình ta có \(\left( {8x - 4y} \right) + \left( { - 8x + 9y} \right) = \left( { - 12} \right) + 3\) nên \(5y =  - 9\) suy ra \(y = \frac{{ - 9}}{5}.\) Thế \(y = \frac{{ - 9}}{5}\) vào phương trình \(2x - y =  - 3\) ta được \(2x - \frac{{ - 9}}{5} =  - 3\) suy ra \(x =  - \frac{{12}}{5}.\)

Vậy nghiệm của hệ phương trình là \(\left( { - \frac{{12}}{5}; - \frac{9}{5}} \right).\)

b) Thay \(m =  - 3\) vào hệ phương trình đã cho ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 18x + 9y = 0\end{array} \right.\)

Nhân cả hai vế của phương trình thứ hai với \(\frac{1}{9}\), ta được \( - 2x + y = 0,\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}2y - y =  - 3\\ - 2x + y = 0\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( {2x - y} \right) + \left( { - 2x + y} \right) =  - 3 + 0\) nên \(0x + 0y =  - 3\) (vô lí) . Phương trình này không có giá trị nào của x và của y thỏa mãn nên hệ phương trình vô nghiệm.

c) Thay \(m = 3\) vào hệ phương trình đã cho ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 18x + 9y = 18\end{array} \right.\)

Nhân cả hai vế của phương trình thứ hai với \(\frac{1}{9}\), ta được \( - 2x + y = 2,\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}2y - y =  - 3\\ - 2x + y = 2\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( {2x - y} \right) + \left( { - 2x + y} \right) =  - 3 + 2\) nên \(0x + 0y =  - 1\) (vô lí) .

Phương trình này không có giá trị nào của x và của y thỏa mãn nên hệ phương trình vô nghiệm. 

Trả lời bởi Hà Quang Minh
HM
Hướng dẫn giải Thảo luận (1)

a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0;\end{array} \right.\)

Bấm máy tính ta được kết quả \(x =  - \frac{{77}}{{61}};y = \frac{{108}}{{61}}.\)

Vậy nghiệm của hệ phương trình là \(\left( { - \frac{{77}}{{61}};\frac{{108}}{{61}}} \right).\)

b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2;\end{array} \right.\)

Bấm máy tính, màn hình hiển thị “Infinite Sol”. Vậy hệ phương trình có vô số nghiệm.

c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + 2y = 0;\end{array} \right.\)

Bấm máy tính ta được kết quả \(x = \frac{1}{2};y = \frac{1}{4}.\)

Vậy nghiệm của hệ phương trình là \(\left( {\frac{1}{2};\frac{1}{4}} \right).\)

d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y =  - 2.\end{array} \right.\)

Bấm máy tính ta được kết quả \(x = \frac{9}{2};y =  - 15.\)

Vậy nghiệm của hệ phương trình là \(\left( {\frac{9}{2}; - 15} \right).\)

Trả lời bởi Hà Quang Minh