Bài 19: Phương trình đường thẳng

QL
Hướng dẫn giải Thảo luận (1)

a) Phương trình tổng quát của đường thẳng \({\Delta _1}\) là: \(2\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 2x + y - 5 = 0\).

b) Phương trình tham số của đường thẳng \({\Delta _2}\)  là:\(\left\{ \begin{array}{l}x =  - 2 + 3t\\y = 1 + 2t\end{array} \right.\)

c) Phương trình đường thẳng AB đi qua điểm \(A\left( {1;3} \right)\) nhận \(\overrightarrow {AB}  = \left( { - 3; - 2} \right)\) là vectơ chỉ phương nên phương trình tham số của AB là \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 - 2t\end{array} \right.\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Trục \({\rm{O}}y\) đi qua \(O\left( {0;0} \right)\) và nhận \(\overrightarrow i = \left( {1;0} \right)\) là vectơ pháp tuyến, do đó phương trình tổng quát của trục Ox là \(1.\left( {x - 0} \right) + 0.\left( {y - 0} \right) = 0 \Leftrightarrow x = 0\).

Trục \({\rm{O}}x\) đi qua \(O\left( {0;0} \right)\) và nhận \(\overrightarrow j  = \left( {0;1} \right)\) là vectơ pháp tuyến, do đó phương trình tổng quát của trục Oy là \(0.\left( {x - 0} \right) + 1.\left( {y - 0} \right) = 0 \Leftrightarrow y = 0\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)

Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên  phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).

b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)

Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên  phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Đường cao kẻ từ A  của tam giác ABC là đường thẳng đi qua A và có vectơ pháp tuyến là \(\overrightarrow {BC}  = \left( { - 5; - 1} \right)\) nên phương trình đường cao đó là:

\( - 5\left( {x - 1} \right) - 1\left( {y - 2} \right) =  0 \Leftrightarrow -5x - y + 7 = 0\)

Hay   \(   5x + y - 7 = 0\)

b) Gọi M là trung điểm AC. Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{1 + \left( { - 2} \right)}}{2} =  - \frac{1}{2}\\{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + \left( { - 1} \right)}}{2} = \frac{1}{2}\end{array} \right. \Rightarrow M\left( { - \frac{1}{2};\frac{1}{2}} \right)\)

Trung tuyến BM đi qua điểm \(B\left( {3;0} \right)\) nhận vectơ \(\overrightarrow {{u_{BM}}}  = 2\overrightarrow {BM}  = \left( { - 7;1} \right)\) là vectơ chỉ phương  nên phương trình tham số của BM là \(\left\{ \begin{array}{l}x = 3 - 7t\\y = t\end{array} \right.\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\)

Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến  \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Máy bay đến sân bay Đà Nẵng ứng với thời gian t (giờ) thỏa mãn:

\(\left\{ \begin{array}{l}16,1 = 21,2 - \frac{{153}}{{40}}t\\108,2 = 105,8 + \frac{9}{5}t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{153}}{{40}}t = 5,1\\\frac{9}{5}t = 2,4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{4}{3}\\t = \frac{4}{3}\end{array} \right. \Leftrightarrow t = \frac{4}{3}\).

Chuyến bay từ Hà Nội đến Đà Nẵng mất \(\frac{4}{3}\) giờ.

b) Tại thời điểm \(t = 1\) giờ, ta có \(x = 21,2 - \frac{{153}}{{40}}.1 = 17,375\)

Vậy tại thời điểm 1 giờ sau khi cất cánh , máy bay ở vị trí có vĩ độ \(17,{375^o}\) Bắc nên máy bay đã bay qua vĩ tuyến 17.

Trả lời bởi Hà Quang Minh