Bài 19: Phương trình đường thẳng

QL
Hướng dẫn giải Thảo luận (1)

Tập hợp tất cả những điểm M để \(\overrightarrow {AM} \) vuông góc với \(\overrightarrow n \) là đường thẳng qua A và vuông góc với giá của vectơ \(\overrightarrow n \).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Gọi \(M\left( {x;y} \right)\)

Ta có: \(\overrightarrow {AM}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow n  = \left( {a;b} \right)\)

\( M \in \Delta \Leftrightarrow \overrightarrow {AM}  \bot \overrightarrow n \)

Hay \(\overrightarrow {AM} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\) (ĐPCM).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Đường cao AH đi qua điểm \(A\left( { - 1;5} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_{AH}}}  = \overrightarrow {BC}  = \left( {4; - 2} \right)\).

Phương trình tổng quát của AH là \(4\left( {x + 1} \right) - 2\left( {y - 5} \right) = 0 \Leftrightarrow 2x - y + 7 = 0\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có \(\Delta :y = 3x + 4 \Leftrightarrow \Delta :3x - y + 4 = 0\)

Vậy vectơ pháp tuyến của \(\Delta \) là \(\overrightarrow n  = \left( {3; - 1} \right)\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Vật thể sẽ di chuyển trên đường thẳng \({\Delta _2}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Vật thể đi qua điểm \(A\left( {2;1} \right)\) và  đi theo hướng  vectơ \(\overrightarrow v \left( {3;4} \right)\).

b) Sau thời gian t thì vectơ vận tốc của vật thể là: \(t\overrightarrow v  = \left( {3t;4t} \right)\).

Vậy tọa độ của vật thể sau thời gian t là: \(\overrightarrow {OA}  + t\overrightarrow v  = \left( {2 + 3t;1 + 4t} \right)\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\overrightarrow {{n_\Delta }}  = \left( {2; - 1} \right)\), suy ra \(\overrightarrow {{u_\Delta }}  = \left( {1;2} \right)\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Vì hai đường thẳng \(\Delta \) và d song song với nhau nên ta có thể chọn \(\overrightarrow {{n_\Delta }}  = \overrightarrow {{n_d}}  = \left( {3; - 4} \right)\).

Mặt khác, \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\)nên phương trình \(\Delta \) là:

\(3\left( {x + 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 11 = 0\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Đường thẳng AB đi qua điểm \(A\left( {{x_1};{y_1}} \right)\) có vectơ chỉ phương là \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {{x_2} - {x_1};{y_2} - {y_1}} \right)\)

Do đó, AB có phương trình tham số là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} - {x_1}} \right)t\\y = {y_1} + \left( {{y_2} - {y_1}} \right)t\end{array} \right.\)

Chọn \(\overrightarrow {{n_{AB}}}  = \left( {{y_2} - {y_1}; - \left( {{x_2} - {x_1}} \right)} \right)\), suy ra AB có phương trình tổng quát là:

\(\left( {{y_2} - {y_1}} \right)\left( {x - {x_1}} \right) - \left( {{x_2} - {x_1}} \right)\left( {y - {y_1}} \right) = 0\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {100;180} \right)\) suy ra \(\overrightarrow {{n_{AB}}}  = \left( {{9_1}; - 5} \right)\).

Mặt khác AB đi qua điểm \(A\left( {0;32} \right)\) nên phương trình của AB là \(9x - 5y + 160 = 0 \Leftrightarrow x = \frac{{5y - 160}}{9}\).

Với \(y = 0{{\rm{ }}^o}F\) ta có: \(x = \frac{{5.0 - 160}}{9} = \left( {\frac{{ - 160}}{9}} \right){{\rm{ }}^o}C\)

Với \(y = 100{{\rm{ }}^o}F\) ta có: \(x = \frac{{5.100 - 160}}{9} = \left( {\frac{{340}}{9}} \right){{\rm{ }}^o}C\)

Vậy \(0{{\rm{ }}^o}F\),\(100{{\rm{ }}^o}F\)tương ứng xấp xỉ \( - 18{{\rm{ }}^o}C,38{{\rm{ }}^o}C\).

Trả lời bởi Hà Quang Minh