Bài 13: Các số đặc trưng đo xu thế trung tâm

QL
Hướng dẫn giải Thảo luận (1)

a) Sắp xếp lại số liệu:

0   0   1   2   13   27   34   63

Trung vị là  \(\dfrac{(2+13)}{2}=7,5.\)

Ta không chọn số trung bình vì số trung bình là 17,5 chênh lệch với 63 lớn. Mốt cũng thế.

b) Các số liệu bài cho không chênh lệch quá lớn với số trung bình nên ta chọn số trung bình.

Số đường truyền trung bình là: \(\dfrac{{32 + 24 + 20 + 14 + 23}}{5} = 22,6\)

c) Các số liệu bài cho không chênh lệch quá lớn với số trung bình nên ta chọn số trung bình.

 IQ trung bình là \(\frac{{80 + {\kern 1pt} 102 + {\kern 1pt} 83 + {\kern 1pt} 103 + {\kern 1pt} 108 + {\kern 1pt} 94 + {\kern 1pt} 110 + {\kern 1pt} 106 + {\kern 1pt} 104 + {\kern 1pt} 100}}{{10}} = 99\)

d) Ta thấy có hai giá trị 42 chênh lệch lớn với các số còn lại nên ta chọn Mốt để đo xu thế trung tâm.

Mốt là 15 (tần số là 3).

Chú ý

Mẫu dữ liệu có sự chênh lệch quá lớn thì không nên chọn số trung bình để đo xu thế trung tâm.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Sắp xếp theo thứ tự không giảm:

0  0  0  0  0  0  0  4  6  10

Số trung bình: \(\overline X = \dfrac{{0.7 + 4 + 6 + 10}}{{10}} = 2\)

Trung vị: \({Q_2} = 0\)

+ Mốt: 0

Tứ phân vị:

+ Nửa bên trái của \({Q_2}\):

0  0  0  0  0

=>\({Q_1} = 0\)

+ Nửa bên phải của \({Q_2}\):

0  0  4  6  10

=>\({Q_3} = 4\)

b) Tứ phân vị thứ nhất và trung vị trùng nhau vì mật độ của mẫu số liệu tập trung hết ở nửa trái của trung vị, mẫu số liệu bên trái có số liệu bằng 0 hết.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Sắp xếp lại mẫu số liệu:

20 120   20 120   21 315   23 405   37 546

Số trung bình:

\(\dfrac{{20120.2 + 21315 + 23405 + 37546}}{5}\)\( = 24501,2\)

Trung vị: 21 315

Mốt: 20 120

Nếu bỏ đi số liệu chỗ ngồi của Sân vận động Quốc gia Mỹ Đình thì số trung bình giảm, trung vị giảm và Mốt thì vẫn giữ nguyên.

Cụ thể: số trung bình là 21 240; trung vị là 20 717,5 và Mốt vẫn là 20 120

Trả lời bởi Hà Quang Minh