Đánh giá sai số tương đối của khối lượng bao gạo được đóng gói theo hai dây chuyền A, B ở Ví dụ 2 và HĐ4. Dựa trên tiêu chí này, dây chuyền nào tốt hơn?
Đánh giá sai số tương đối của khối lượng bao gạo được đóng gói theo hai dây chuyền A, B ở Ví dụ 2 và HĐ4. Dựa trên tiêu chí này, dây chuyền nào tốt hơn?
Hãy viết số quy tròn của số gần đúng trong những trường hợp sau:
a) \(11{\rm{ 251 900}} \pm {\rm{300}}\)
b) \(18,2857 \pm 0,01\)
a)
Bước 1:
Vì độ chính xác đến hàng trăm (d=300) nên hàng làm tròn là hàng nghìn. Chữ số hàng làm tròn là 1.
Bước 2:
Vì số bên phải số 1 là số 9>5 nên ta tăng số 1 thêm 1 đơn vị.
Vậy số quy tròn của \(11{\rm{ 251 900}}\) là \(11{\rm{ 252 000}}\)
b)
Vì độ chính xác đến hàng phần trăm (d=0,01) nên hàng làm tròn là hàng phần chục. Chữ số hàng làm tròn là 2.
Vì số bên phải số 2 là số 8>5 nên ta tăng 2 thêm 1 đơn vị và bỏ các số sau số 2.
Vậy số quy tròn của \(18,2857\) là \(18,3\).
Trả lời bởi Hà Quang MinhGọi P là chu vi của đường tròn bán kính 1cm. Hãy tìm một giá trị gần đúng của P.
Chu vi đường tròn là:
\(P = 2\pi R = 2\pi .1 = 2\pi \left( {cm} \right)\)
Bấm máy tính ta thấy \(2\pi \approx 6,28\)
Vậy \(P \approx 6,28cm\).
Chú ý
Ta có thể lấy số gần đúng khác của \(2\pi \) như: 6,283 hoặc 6,283185
Trả lời bởi Hà Quang MinhCông ty (trong Ví dụ 2) cũng sử dụng dây chuyền B để đóng gạo với khối lượng chính xác là 20 kg. Trên bao bì ghi thông tin khối lượng là \(20 \pm 0,5\) kg.
Khẳng định “Dây chuyền A tốt hơn dây chuyền B" là đúng hay sai?
Mặc dù độ chính xác của khối lượng bao gạo đóng bằng dây chuyền A nhỏ hơn nhưng do bao gạo đóng bằng dây chuyền B nặng hơn nhiều nên ta không dựa vào sai số tuyệt đối để so sánh.
Do đó câu hỏi này ta chưa thể trả lời chính xác được nếu chỉ dựa vào các kiến thức đã học trước đó.
Xem thêm bài Luyện tập 3 trang 76 Sách giáo khoa Toán 10 – Kết nối tri thức với cuộc sống.
Trả lời bởi Hà Quang MinhTrong HĐ2, Hòa dùng kính lúp để quan sát mực nước trên ống đo thứ hai được hình ảnh như Hình 5.2. Kí hiệu \(\overline a \)(\(c{m^3}\)) là số đo thể tích của nước.
Quan sát hình vẽ để so sánh \(\left| {13 - \bar a} \right|\) và \(\left| {13,1 - \bar a} \right|\) rồi cho biết trong hai số đo thể tích \(13c{m^3}\) và \(13,1c{m^3}\), số đo nào gần với thể tích của cốc nước hơn.
Ta quan sát hình trên thì thấy số 13,1 gần \(\bar a\) hơn.
Trả lời bởi Hà Quang MinhHãy lấy một ví dụ về số gần đúng.
Ta không thể biết chính xác giá trị của \(\sqrt 3 \).
Số gần đúng của \(\sqrt 3 \) là 1,73.
Chú ý
Ta có thể lấy các số khác như \(\sqrt 2 ;\sqrt p \) với p là số nguyên tố hoặc số \(\pi \).
Trả lời bởi Hà Quang MinhNgày 8-12-2020, Trung Quốc và Nepal ra thông cáo chung khẳng định chiều cao mới đo được của đỉnh núi cao nhất thế giới Everest là 8 848,86 m.
(Theo Tuoitre.vn)
Trong các số được đưa ra ở tình huống mở đầu, số nào gần nhất với số được công bố ở trên?
Ta có: \(\left| {8848,86 - 8848} \right| = 0,86\)
\(\left| {8848,86 - 8848,13} \right| = 0,73\)
\(\left| {8848,86 - 8844,43} \right| = 4,43\)
\(\left| {8848,86 - 8850} \right| = 1,14\)
Trong các số 0,86; 0,73; 4,43; 1,14 thì số 0,73 là số nhỏ nhất.
Do đó trong các số 8 848 m; 8 848,13 m; 8 844,43 m; 8 850 m thì số ; 8 848,13 m là số gần nhất với số được công bố ngày 8-12-2020.
Chú ý
Giá trị tuyệt đối |a-b| càng nhỏ thì a và b càng gần nhau.
Trả lời bởi Hà Quang MinhĐỉnh Everest được mệnh danh là "nóc nhà của thế giới”, bởi đây là đỉnh núi cao nhất trên Trái Đất so với mực nước biển. Có rất nhiều con số khác nhau đã từng được công bố về chiều cao của đỉnh Everest: 8 848 m;8 848,13m;8 844.43 m;8 850 m:... Vì sao lại có nhiều kết quả khác nhau như vậy và đâu là con số chính xác?
Khi đo độ cao đỉnh núi Everest người ta không thể đo trực tiếp một cách chính xác mà phải thông qua tính toán.
Mỗi vị trí quan sát hoặc trong tính toán, có những con số không thể lấy chính xác đo đó kết quả thu được cũng không giống nhau.
Ngoài ra có thể người ta đã làm tròn kết quả để được một con số gọn mà chính xác nhất có thể, nên các kết quả cũng khác nhau.
Trả lời bởi Hà Quang Minh
Trang và Hoà thực hiện đo thể tích một cốc nước bằng hai ống đồng có vạch chia được kết quả như Hình 5.1.
Hãy cho biết số đo thể tích trên mỗi ống.
Giả sử ống nước thứ nhất là trang đo và ống nước thứ hai là Hòa đo.
Khi đó ống thứ nhất đo được là 13\(c{m^3}\), ống thứ hai là 13,1\(c{m^3}\)
Chú ý
Với ống thứ hai thì có vạch chia nhỏ hơn.
Trả lời bởi Hà Quang MinhMột phép đo đường kính nhân tế bào cho kết quả là \(5 \pm 0,3\mu m\). Đường kính thực của nhân tế bào thuộc đoạn nào?
Gọi \(\bar a\) là đường kính thực của nhân tế bào.
Vì phép đo đường kính nhân tế bào cho kết quả là \(5 \pm 0,3\mu m\).
=> \(a = 5\mu m;d = 0,3\mu m\)
Nên ta có \(\bar a\) nằm trong đoạn \(\left[ {5 - 0,3;5 + 0,3} \right]\) hay \(\left[ {4,7;5,3} \right]\).
Trả lời bởi Hà Quang Minh
Xét dây chuyền A: ta có d=0,2; a=5.
\({\delta _5} \le \frac{{0,2}}{{\left| 5 \right|}} = 0,04 = 4\% \)
Xét dây chuyền B: ta có d=0,5; a=20
\({\delta _5} \le \frac{{0,5}}{{\left| {20} \right|}} = 0,025 = 2,5\% \)
Ta thấy \(2,5\% < 4\% \) nên dây chuyền B tốt hơn.
Chú ý
Có thể không cần đổi sang đơn vị phần trăm (%) để so sánh.
Trả lời bởi Hà Quang Minh