Bài 1: Nguyên hàm

H24
Hướng dẫn giải Thảo luận (1)

a) Do \(\left( {\frac{{{x^3}}}{3}} \right)' = {x^2}\) nên \(\int {{x^2}dx = \frac{{{x^3}}}{3} + C} \).

Suy ra \(3\int {{x^2}dx = 3\left( {\frac{{{x^3}}}{3} + C} \right) = {x^3}}  + 3C\)

b) Do \(\left( {{x^3}} \right)' = 3{x^2}\) nên \(\int {3{x^2}dx}  = {x^3} + C\).

c) Ta thấy rằng \(\int {3{x^2}dx} \) và \(3\int {{x^2}dx} \) đều cùng có dạng \({x^3} + C\), với \(C\) là một hằng số. Do đó \(\int {3{x^2}dx}  = 3\int {{x^2}dx} \).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) \(\int {\left( { - \frac{{\cos x}}{4}} \right)dx}  =  - \frac{1}{4}\int {\cos xdx}  =  - \frac{1}{4}\sin x + C\)

b) \(\int {{2^{2x + 1}}dx}  = 2\int {{{\left( {{2^2}} \right)}^x}dx}  = 2\int {{4^x}dx = 2\frac{{{4^x}}}{{\ln 4}} + C = \frac{{{4^x}}}{{\ln 2}} + C} \)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Do \(\left( {\frac{{{x^3}}}{3}} \right)' = {x^2}\) nên \(\int {{x^2}dx}  = \frac{{{x^3}}}{3} + {C_1}\)

Do \(\left( {{x^2}} \right)' = 2x\) nên \(\int {2xdx}  = {x^2} + {C_2}\)

Suy ra \(\int {{x^2}dx}  + \int {2xdx}  = \frac{{{x^3}}}{3} + {x^2} + {C_1} + {C_2}\)

b) Do \(\left( {\frac{{{x^3}}}{3} + {x^2}} \right)' = {x^2} + 2x\) nên \(\int {\left( {{x^2} + 2x} \right)dx}  = \frac{{{x^3}}}{3} + {x^2} + C\)

c) Ta thấy rằng \(\int {{x^2}dx}  + \int {2xdx} \) và \(\int {\left( {{x^2} + 2x} \right)dx} \) đều cùng có dạng \(\frac{{{x^3}}}{3} + {x^2} + C\), với \(C\) là một hằng số. Do đó \(\int {{x^2}dx}  + \int {2xdx}  = \int {\left( {{x^2} + 2x} \right)dx} \).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Với \(x > 0\), ta có:

\(\int {\left( {3{x^3} + \frac{2}{{\sqrt[5]{{{x^3}}}}}} \right)dx}  = 3\int {{x^3}dx}  + 2\int {\frac{1}{{{x^{\frac{3}{5}}}}}dx = 3\int {{x^3}dx}  + 2\int {{x^{\frac{{ - 3}}{5}}}} dx = \frac{{3{x^4}}}{4} + \frac{{2{x^{\frac{2}{5}}}}}{{\frac{2}{5}}} + C} \)

\( = \frac{{3{x^4}}}{4} + 5\sqrt[5]{{{x^2}}} + C\)

b) \(\int {\left( {\frac{3}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx}  = 3\int {\frac{1}{{{{\cos }^2}x}}dx - \int {\frac{1}{{{{\sin }^2}x}}dx}  = 3\tan x - \left( { - \cot x} \right) + C} \)

\( = 3\tan x + \cot x + C\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Gọi \(s\left( t \right)\) là quãng đường ô tô đi được kể từ khi hãm phanh cho đến thời điểm \(t\) giây.

Do \(s'\left( t \right) = v\left( t \right)\), nên

 \(s\left( t \right) = \int {v\left( t \right)dt}  = \int {\left( {19 - 2t} \right)dt}  = 19\int {dt}  - \int {2tdt}  = 19t - {t^2} + C\).

Mặt khác, do mốc thời gian được tính kể từ khi hãm phanh, nên \(s\left( 0 \right) = 0\).

Suy ra \(19.0 - {0^2} + C = 0 \Rightarrow C = 0\).

Vậy quãng đường ô tô đi được kể từ khi hãm phanh cho đến thời điểm \(t\) giây là \(s\left( t \right) = 19t - {t^2}\).

Quãng đường ô tô đi được sau 1 giây hãm phanh là \(s\left( 1 \right) = 19.1 - {1^2} = 18{\rm{ }}\left( {\rm{m}} \right)\).

Quãng đường ô tô đi được sau 2 giây hãm phanh là \(s\left( 2 \right) = 19.2 - {2^2} = 34{\rm{ }}\left( {\rm{m}} \right)\).

Quãng đường ô tô đi được sau 3 giây hãm phanh là \(s\left( 1 \right) = 19.3 - {3^2} = 48{\rm{ }}\left( {\rm{m}} \right)\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Có F'(x) = (xex)' = ex + xex = (1 + x)ex.

Do đó \(\int f\left(x\right)dx=\int\left(x+1\right)e^xdx=xe^x+C\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) \(\int {{x^5}dx}  = \frac{{{x^6}}}{6} + C\).

b) \(\int {\frac{1}{{\sqrt[3]{{{x^2}}}}}dx} = \int {\frac{1}{{{x^{\frac{2}{3}}}}}dx}  = \int {{x^{ - \frac{2}{3}}}dx = \frac{{{x^{\frac{1}{3}}}}}{{\frac{1}{3}}} + C = 3\sqrt[3]{x} + C} \).

c) \(\int {{7^x}dx}  = \frac{{{7^x}}}{{\ln 7}} + C\).

d) \(\int {\frac{{{3^x}}}{{{5^x}}}dx}  = \int {{{\left( {\frac{3}{5}} \right)}^x}dx}  = \frac{{{{\left( {\frac{3}{5}} \right)}^x}}}{{\ln \frac{3}{5}}} + C\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Ta có \(F\left( x \right) = \int {f\left( x \right)dx}  = \int {\frac{1}{{{{\sin }^2}x}}dx}  =  - \cot x + C\),

Do \(F\left( {\frac{\pi }{2}} \right) = 1\) nên \( - \cot \left( {\frac{\pi }{2}} \right) + C = 1 \Rightarrow 0 + C = 1 \Rightarrow C = 1\).

Vậy \(F\left( x \right) =  - \cot x + 1\) là hàm số cần tìm.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) \(\int {\left( {2{x^5} + 3} \right)dx}  = 2\int {{x^5}dx}  + 3\int {dx}  = 2\frac{{{x^6}}}{6} + 3x + C = \frac{{{x^6}}}{3} + 3x + C\)

b) \(\int {\left( {5\cos x - 3\sin x} \right)dx}  = 5\int {\cos xdx}  - 3\int {\sin xdx}  = 5\sin x - 3\left( { - \cos x} \right) + C\)

\( = 5\sin x + 3\cos x + C\)

c) \(\int {\left( {\frac{{\sqrt x }}{2} - \frac{2}{x}} \right)dx}  = \frac{1}{2}\int {{x^{\frac{1}{2}}}dx}  - 2\int {\frac{1}{x}dx}  = \frac{1}{2}.\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} - 2\ln \left| x \right| + C = \frac{1}{3}\sqrt {{x^3}}  - 2\ln \left| x \right| + C\)

d) \(\int {\left( {{e^{x - 2}} - \frac{2}{{{{\sin }^2}x}}} \right)dx}  = {e^{ - 2}}\int {{e^x}dx}  - 2\int {\frac{1}{{{{\sin }^2}x}}dx = {e^{ - 2}}.{e^x} - 2\left( { - \cot x} \right) + C} \) \( = {e^{x - 2}} + 2\cot x + C\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) \(\int {x{{\left( {2x - 3} \right)}^2}dx}  = \int {x\left( {4{x^2} - 12x + 9} \right)dx}  = \int {\left( {4{x^3} - 12{x^2} + 9x} \right)dx} \)

\( = 4\int {{x^3}dx}  - 12\int {{x^2}dx}  + 9\int {xdx}  = 4.\frac{{{x^4}}}{4} - 12.\frac{{{x^3}}}{3} + 9.\frac{{{x^2}}}{2} + C = {x^4} - 4{x^3} + \frac{9}{2}{x^2} + C\)

b) \(\int {{{\sin }^2}\frac{x}{2}dx}  = \int {\frac{{1 - \cos x}}{2}dx = \frac{1}{2}\int {dx}  - \frac{1}{2}\int {\cos xdx}  = \frac{1}{2}x - \frac{1}{2}\sin x + C} \)

c) \(\int {{{\tan }^2}xdx}  = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx = \int {\frac{1}{{{{\cos }^2}x}}dx}  - \int {dx}  = \tan x - x + C} \)

d) \(\int {{2^{3x}}{{.3}^x}} dx = \int {{{\left( {{2^3}} \right)}^x}{{.3}^x}dx}  = \int {{8^x}{{.3}^x}dx}  = \int {{{24}^x}dx}  = \frac{{{{24}^x}}}{{\ln 24}} + C\)

Trả lời bởi datcoder