Cho hàm số y = - x2.
a) Lập bảng giá trị của hàm số.
b) Vẽ đồ thị hàm số.
Cho hàm số y = - x2.
a) Lập bảng giá trị của hàm số.
b) Vẽ đồ thị hàm số.
Cho hàm số y = \(\frac{1}{2}\)x2.
a) Vẽ đồ thị hàm số.
b) Trong các điểm A(-6;-8), B(6;8), C \(\left( {\frac{2}{3};\frac{2}{9}} \right)\), điểm nào thuộc đồ thị của hàm số trên?
a) Bảng giá trị:
Trên mặt phẳng tọa độ, lấy các điểm A(-2;2), B(-1; \(\frac{1}{2}\)), O(0;0), B’(1; \(\frac{1}{2}\)), A’(2;2)
Đồ thị hàm số y = \(\frac{1}{2}\)x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như dưới đây.
b) Thay A(-6;-8) vào y = \(\frac{1}{2}\)x2 ,ta có: -8 \( \ne \)18 nên A(-6;-8) không thuộc đồ thị hàm số.
Thay B(6;8) vào y = \(\frac{1}{2}\)x2 ,ta có: 8 \( \ne \)18 nên B(6;8) không thuộc đồ thị hàm số.
Thay C \(\left( {\frac{2}{3};\frac{2}{9}} \right)\) vào y = \(\frac{1}{2}\)x2 ,ta có: \(\frac{2}{9}\) = \(\frac{2}{9}\) nên C \(\left( {\frac{2}{3};\frac{2}{9}} \right)\) thuộc đồ thị hàm số.
Trả lời bởi datcoderCho hai hàm số \(y = \frac{1}{4}{x^2}\)và \(y = - \frac{1}{4}{x^2}\). Vẽ đồ thị của hai hàm số đã cho trên cùng một mặt phẳng tọa độ Oxy.
Bảng giá trị của hàm số:
Trên mặt phẳng tọa độ, lấy các điểm A(-4;4), B(-2; 1), O(0;0), C(2; 1), D(4;4)
A’(-4;-4), B’(-2; -1), C’(2; -1), D’(4;-4)
Đồ thị hàm số \(y = \frac{1}{4}{x^2}\)là một đường parabol đỉnh O, đi qua các điểm A(-4;4), B(-2; 1), O(0;0), C(2; 1), D(4;4) và có dạng như dưới.
Đồ thị hàm số \(y = - \frac{1}{4}{x^2}\)là một đường parabol đỉnh O, đi qua các điểm A’(-4;-4), B’(-2; -1), O(0;0), C’(2; -1), D’(4;-4) và có dạng như dưới.
Trả lời bởi datcoderCho hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).
a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2;6).
b) Vẽ đồ thị của hàm số với a vừa tìm được.
c) Tìm các điểm thuộc đồ thị trên có tung độ y = 9.
a) Thay x = 2; y = 6 vào hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta được:
6 = a.22 suy ra a = \(\frac{3}{2}\).
b) Theo phần a ta vẽ đồ thị hàm số \(y = \frac{3}{2}{x^2}\).
Bảng giá trị:
Trên mặt phẳng tọa độ, lấy các điểm A(-2;6), B(-1; \(\frac{3}{2}\)), O(0;0), B’(1; \(\frac{3}{2}\)), A’(2;6)
Đồ thị hàm số \(y = \frac{3}{2}{x^2}\)là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như dưới đây.
c) Thay y = 9 vào \(y = \frac{3}{2}{x^2}\), ta được:
\(\begin{array}{l}9 = \frac{3}{2}{x^2}\\{x^2} = 6\\x = \pm \sqrt 6 \end{array}\)
Vậy có 2 điểm thuộc đồ thị là: \(\left( {\sqrt 6 ;9} \right)\) và \(\left( { - \sqrt 6 ;9} \right)\).
Trả lời bởi datcoderCho một hình lập phương có độ dài cạnh là x (cm).
a) Viết công thức tính diện tích toàn phần S (cm2) của hình lập phương theo x.
b) Lập bảng giá trị của hàm số S khi x lần lượt nhận các giá trị: \(\frac{1}{2}\); 1; \(\frac{2}{3}\); 2; 3.
c) Tính độ dài cạnh của hình lập phương, biết S = 54 cm2.
a) Diện tích toàn phần của hình lập phương là: S = a.a.6 = 6a2
b) Lập bảng giá trị:
c) Ta có S = 54 cm2 thay vào S = 6a2 (a > 0), ta được:
54 = 6a2
a2 = 9
\(\left[ {\begin{array}{*{20}{c}}{a = 3(Tm)}\\{a = - 3(l)}\end{array}} \right.\)
Vậy cạnh của hình lập phương cần tìm là 3 cm.
Trả lời bởi datcoderKhi gió thổi vuông góc vào cánh buồm của một con thuyền thì lực F(N) của nó tỉ lệ thuận với bình phương tốc độ v (m/s) của gió, tức là F = av2 (a là hằng số). Biết rằng khi tốc độ của gió bằng 3 m/s thì lực tác động lên cánh buồm bằng 180 N.
a) Tính hằng số a.
b) Với a vừa tìm được, tính lực F khi v = 15 m/s và khi v = 26 m/s.
c) Biết rằng cánh buồm chỉ có thể chịu được một lực tối đa là 14580 N, hỏi con thuyền có thể đi được trong gió bão với tốc độ gió 90 km/h hay không?
a) Thay v = 3, F = 180 vào F = av2, ta được:
180 = a.32 suy ra a = 20
b) Theo phần a ta có công thức F = 20v2 , thay v = 15 m/s ta được:
F = 20.152 = 4500 N
Thay v = 26 m/s ta được F = 20.262 = 13520 N
c) Đổi 90 km/h = 25 m/s
Thay F = 14580 vào F = 20v2 (v > 0), ta có:
14580 = 20.v2
v2 = 729
\(\left[ {\begin{array}{*{20}{c}}{v = 27(Tm)}\\{v = - 27(l)}\end{array}} \right.\)
Vậy con thuyền có thể đi được trong gió bão với tốc độ gió tối đa là 27 m/s nên có thể đi với tốc độ gió 25 m/s hay 90 km/h.
Trả lời bởi datcoder
a) Ta có bảng giá trị:
Trên mặt phẳng tọa độ, lấy các điểm A(−2; −4), B(−1; −1), O(0; 0), B'(1; −1), A'(2; −4).
Đồ thị hàm số y = −x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như dưới đây.
Trả lời bởi datcoder