Bài 1: Hàm số lượng giác

SK
Hướng dẫn giải Thảo luận (1)

a) \(D=R\backslash\left\{1\right\}\)
b) \(y\left(x\right)\) xác định khi:
\(cos\dfrac{x}{3}\ne0\Leftrightarrow\dfrac{x}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{3\pi}{2}+k3\pi\)
\(D=R\backslash\left\{\dfrac{3\pi}{2}+k3\pi\right\};k\in Z\)
c) \(y\left(x\right)\) xác định khi:
\(sin2x\ne0\Leftrightarrow2x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\).
\(D=R\backslash\left\{\dfrac{k\pi}{2}\right\};k\in Z\)
d) \(y\left(x\right)\) xác định khi:
\(x^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\).
\(D=R\backslash\left\{1;-1\right\}\)

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (2)

Bài 5. Cosx = là phương trình xác định hoành độ giao điểm của đường thẳng y = và đồ thị y = cosx.

Từ đồ thị đã biết của hàm số y = cosx, ta suy ra x = , (k ∈ Z), ( chú ý tìm giao điểm của đường thẳng cới đồ thị trong đoạn [-π ; π] và thấy ngay rằng trong đoạn này chỉ có giao điểm ứng với rồi sử dụng tính tuần hoàn để suy ra tất cả các giá trị của x là x = , (k ∈ Z)).



Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (1)

a) với mọi x thuộc tập xác định của hàm số đã cho ta có

0 ≤ cosx ≤ 1 => y = 2√cosx + 1 ≤ 3.

Giá trị y = 3 đạt được khi cosx = 1 ⇔ x = k2π, k ∈ Z, do đó max y = 3.

b) ta có -1 ≤ sinx ≤ 1, ∀x => 2 ≥ -2sinx ≥ -2 => 1 ≤ y = 3 – 2sinx ≤ 5, ∀x .

Giá trị y = 5 đạt được khi sinx = -1 ⇔ x = −π2+k2π−π2+k2π . k ∈ Z.

Giá trị y = 1 đạt được khi sinx = 1 ⇔ x = π2+k2ππ2+k2π, k ∈ Z.

Vậy max y = 5 ; min y = 1.

 

Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (1)

Nhìn đồ thị y = sinx ta thấy trong đoạn [-π ; π] các điểm nằm phía trên trục hoành của đồ thị y = sinx là các điểm có hoành độ thuộc khoảng (0 ; π). Từ đố, tất cả các khoảng giá trị của x để hàm số đó nhận giá trị dương là (0 + k2π ; π + k2π) hay (k2π ; π + k2π) trong đó k là một số nguyên tùy ý.

Trả lời bởi Lê Thiên Anh
SK
Hướng dẫn giải Thảo luận (1)

Bài 4. Do sin (t + k2π) = sint, ∀k ∈ Z (tính tuần hoàn của hàm số f(t) = sint), từ đó sin(2π + k2π) = sin2x => sin2(tx+ kπ) = sin2x, ∀k ∈ Z.

Do tính chất trên, để vẽ đồ thị của hàm số y = sin2x, chỉ cần vẽ đồ thị của hàm số này trên một đoạn có độ dài π (đoạn Chẳng hạn), rồi lại tịnh tiến dọc theo trục hoành sang bên phải và bên trái từng đoạn có độ dài π .

Với mỗi x0 thì x = 2x0 ∈ [-π ; π], điểm M(x ; y = sinx) thuộc đoạn đồ thị (C) của hàm số y = sinx, (x ∈ [-π ; π]) và điểm M’(x0 ; y0 = sin2x0) thuộc đoạn đồ thị (C’) của hàm số y = sin2x, ( x ∈ ) (h.5). Chú ý rằng, x = 2x0 => sinx = sin2x0 do đó hai điểm M’ , M có tung độ bằng nhau nhưng hoành độ của M’ bằng một nửa hoành độ của M. Từ đó ta thấy có thể suy ra (C’) từ (C) bằng cách “co” (C) dọc theo trục hoành như sau : với mỗi M(x ; y) ∈ (C) , gọi H là hình chiếu vuông góc của M xuống trục Oy và M’ là trung điểm của đoạn HM thì M’ ∈ (C’) (khi m vạch trên (C) thì M’ vạch trên (C’)). Trong thực hành, ta chỉ cần nối các điểm đặc biệt của (C’) (các điểm M’ ứng với các điểm M của (C) với hoành độ ∈ {}).



Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (1)

Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.

b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.

c) Hàm số đã cho không xác định khi và chỉ khi .

Hàm số đã cho có tập xác định là R {}.

d) Hàm số đã cho không xác định khi và chỉ khi

Hàm số đã cho có tập xác định là R {}.



Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (2)

Bài 1. a) trục hoành cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 0, đó là x = - π; x = 0 ; x = π.

b) Đường thẳng y = 1 cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ . Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 1, đó là .

c) Phần phía trên trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .

d) Phần phía dưới trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị âm là x ∈ .


Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (1)

Bài 3. Ta có

|sinx|={sinx,sinx≥0−sinx,sinx≤0|sinx|={sinx,sinx≥0−sinx,sinx≤0

Mà sinx < 0 ⇔ x ∈ (π + k2π , 2π + k2π), k ∈ Z nên lấy đối xứng qua trục Ox phần đồ thị của hàm số y = sinx trên các khoảng này còn giữ nguyên phần đồ thị hàm số y = sinx trên các đoạn còn lại ta được đồ thị của hàm số y = IsinxI



Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (1)

Dựa vào đồ thị hàm số y = cosx, để làm số nhận giá trị âm thì:

x∈(−3π2;−π2);(π2;3π2)...⇒x∈(π2+k2π;3π2+k2π),k∈Z

Trả lời bởi Lê Thiên Anh