Học tại trường Chưa có thông tin
Đến từ Nghệ An , Chưa có thông tin
Số lượng câu hỏi 3
Số lượng câu trả lời 2
Điểm GP 1
Điểm SP 3

Người theo dõi (0)

Đang theo dõi (1)

PL

Câu trả lời:

\(2b.\)  

Với mọi  \(m;n\in Z\), ta có:

\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

\(\text{*)}\) Xét  \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)

                                         \(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)

                                         \(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)

             \(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)

Vì  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  là tích của  \(5\)  số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2;3\)  và  \(5\) 

Mà \(\left(2;3;5\right)=1\)  

Do đó,  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2.3.5=30\)  \(\left(1\right)\)

Mặt khác,  \(m\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(6\)  (tích của  \(3\)  số nguyên liên tiếp)

         nên  \(5mn\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(30\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\) , suy ra  \(mn\left(m^4-1\right)\)  chia hết cho  \(30\)  \(\left(\text{*}\right)\)

Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\)  chia hết cho cho  \(30\)  \(\left(\text{**}\right)\)

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra  \(mn\left(m^4-n^4\right)\)  chia hết cho  \(30\)  với mọi  \(m;n\in Z\)