HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho x, y là số hữu tỉ khác 1 thỏa mãn: \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
Chứng minh \(M=x^2+y^2-xy\) là bình phương của một số hữu tỉ
Cho a>b>0 và ab=1. Chứng minh rằng: \(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Cho a,b,c>0 và a+b+c=2. Chứng minh rằng: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge1\)
Cho \(x\ne0\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{2016x^2-2x+1}{x^2}\)
Cho \(x,y,z\ne2\), 2a=by+cz, 2b=bx+cz, 2c=ax+by
Tính giá trị của biểu thức:
\(A=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\)
Giải phương trình nghiệm nguyên: \(x^6+3x^2+1=y^3\)
Tìm số nguyên dương n để \(n^2-n+2\) là số chính phương
Tìm giá trị nhỏ nhất của biểu thức P=1-xy, trong đó x, y là các số thực thỏa mãn \(x^{2013}+y^{2013}=2x^{1006}y^{1006}\)