HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
tìm m để đồ thị hàm số
1) \(y=mx^4+\left(m^2-9\right)x^2+10\) có 3 điểm cực trị
2) \(y=mx^4+\left(2m+1\right)x^2+1\) có một điểm cực tiểu
3) \(y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại
tìm m để đồ thị hàm số \(y=x^4+2\left(m-2\right)x^2+m^2-5m+5\) có 3 điểm cực trị là các đỉnh của một tam giác đều
tìm m để đồ thị hàm số :
1) \(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cực đại tại x=1
2) \(y=x^4-\left(m+1\right)x^{2^{ }}+1\) đạt cực tiểu tại x=-1
tìm m để đồ thị hàm số \(y=x^4-2mx^2+2m+m^4\) có 3 điểm cực trị là đỉnh của một tam giác có diện tích bằng 4
tìm m để đồ thị hàm số \(y=mx^4-4x^2+1\) có 3 điểm cực trị là đỉnh của một tam giác vuông cân
chóp SABCD có đáy ABCD là hình thoi cạnh a, \(\widehat{ABC}=60^o\), SA vuông góc với đáy, SC tạo với đáy góc \(60^o\). Tính \(d_{\left(AB,SD\right)}\)
cho hình chóp SABCD có đáy là hình thang vuông tại A và D, SA vuông góc với đáy, SA=SD=a , AB=2a. Tính \(d_{\left(AB,BC\right)}\)
chóp SABC có đáy ABC là tam giác vuông cân tại B, BA=BC=2a. Hai mặt phẳng (SAB) và (SAC) cũng vuông góc với đáy. Gọi M và N lần lượt là trug điểm của AB, AC. Góc giữa hai mặt phẳng (SBC) và (ABC)= \(60^o\). Tính \(d_{\left(AB,SN\right)}\)
chóp SABCD só đáy ABCD là hình vuông cạnh a, \(SD=\dfrac{a\sqrt{17}}{2}\) , hình chiếu của S trên đáy là trung điểm H của đoạn AB. Gọi K là trung điểm AD. Tính \(d_{\left(HK,SD\right)}\)