a)Xét △ABD và △ACE:
góc ADB = góc AEC = 90o (BD vuông góc AC, CE vuông góc AB)
AB = AC (ΔABC cân tại A)
A là góc chung
Vậy △ABD = △ACE (ch.gn)
b) Ta có: △ABD = △ACE (cmt)
=>AD = AE (các cặp cạnh tương ứng)
=>△AED cân tại A
c) cho AF nằm trên AH sao cho AF\(\perp\)ED tại F
Xét △AFE và △AFD
góc AFE = góc AFD = 90o (AF\(\perp\)ED tại F)
AE = AD (cmt)
AF là cạnh chung
Vậy △AFE = △AFD (ch.cgv)
=>FE = FD (các cặp cạnh tương ứng)
=> F là trung điểm của ED
Vì AF nằm trên AH
=> AH đi qua trung điểm của AE và AH\(\perp\)ED
=>AH là đường trung trực của ED
d)Xét ΔECB và\(\Delta\)DBC
góc CEB = góc BDC = 90o ( BD vuông góc AC, CE vuông góc AB)
CB là cạnh chung
góc EBC = góc DCB (ΔABC cân tại A)
vậy ΔECB = \(\Delta\)DBC (ch.gn)
=> góc ECB = góc DBC (các cặp góc tương ứng)
Xét ΔCDB và ΔCDK
DB = DK (gt)
góc CDB = góc CDK = 90o (gt)
DC là cạnh chung
Vậy ΔCDB = ΔCDK (c.g.c)
=> góc CBD = góc CKD (các cặp góc tương ứng)
Mà góc CBD = góc ECB (cmt)
=> góc ECB=DKC