Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 1
Số lượng câu trả lời 0
Điểm GP 0
Điểm SP 0

Người theo dõi (0)

Đang theo dõi (0)


VD

Chủ đề:

Bài 3: Đường thẳng vuông góc với mặt phẳng

Câu hỏi:

Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) .

Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều là các tam giác vuông . | b ) Gọi M , P lần lượt là hình chiếu của A lên SB , SD . Tìm giao điểm N của SC với mặt phẳng ( APM ) . CMR : SC vuông góc với mặt phẳng ( APM ) , AN vuông góc với MP . c ) Tính diện tích thiết diện tạo bởi mặt phẳng ( APM ) với hình chóp .

Bài 3 . Cho hình chóp S . ABCD đáy ABCD là hình thang vuông tại A và D , AD = DC = a , AB = 2a , mp ( SAB ) vuông góc với ( ABC ) , tam giác SAB đều . a ) Xác định và tính chiều cao của hình chóp . b ) Xác định và tính góc giữa các cạnh bên và mặt đáy của hình chóp . c ) Gọi I là trung điểm của AB . Xác định và tính khoảng cách giữa SA và IC , SD và IC . d ) Xác định và tính diện tích thiết diện tạo bởi mặt phẳng ( P ) đi qua | trung điểm J của BC song song với AB và vuông góc với mp ( ABC ) cắt hình chóp . Bài 4 . Cho hình chóp S . ABC ; SA , SB , SC đối mặt vuông góc , SA = 2 , AC = av3 , BC = 2a . a ) Tính khoảng cách từ S đến mặt phẳng ( ABC ) . b ) Gọi H là hình chiếu vuông góc của S lên mặt phẳng ( ABC ) . CMR : H là trực tâm của tam giác ABC . c ) Xác định và tính góc giữa mặt phẳng ( SBC ) và ( ABC ) . d ) Tính khoảng cách giữa các đường thẳng AC và SB , SC và AB .

Bài 5 . Cho hình vuông ABCD . Gọi S là điểm trong không gian sao cho SAB là tam giác đều và mp ( SAB ) vuông góc với mp ( ABCD ) . a ) CMR : mp ( SAB ) 1 mp ( SAD ) ; mp ( SAB ) 1 mp ( SBC ) . b ) Tính góc giữa hai mặt phẳng ( SAD ) và ( SBC ) . c ) Gọi H và I lần lượt là trung điểm của AB và BC . CMR : mp ( SHC ) 1 mp ( SDI ) .

Bài 6 . Cho tứ diện SABC , hai mặt phẳng ( SAB ) và ( SBC ) vuông góc với nhau và SA 1 mp ( ABC ) , SB = a2 , góc BSC bằng 45° . a ) CMR : BC 1 SB . b ) Tìm điểm cách đều bốn điểm S , A , B , C . a