HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Đặt \(f\left(x\right)=x^3-3x^2+m\)
\(f'\left(x\right)=3x^2-6x\)
\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)(tm)
\(x\) \(-2\) \(0\) \(2\)
\(f'\left(x\right)\) || \(+\) \(0\) \(-\) \(0\)
\(f\left(x\right)\) \(-20+m\) \(m\) \(-4+m\)
\(\Rightarrow f\left(x\right)\in\left[-20+m;m\right]\)
\(min\left|f\left(x\right)\right|=min\left\{\left|-20+m\right|,\left|m\right|\right\}\)
Để GTNN của \(\left|f\left(x\right)\right|\) xảy ra tại \(x=0\)
\(\Leftrightarrow\left|m\right|< \left|-20+m\right|\)
\(\Leftrightarrow m< 10\)
Vậy có 30 giá trị của m.
Bài lỗi quá, BBT là:
\(x\) \(-vc\) \(-\sqrt{3}\) \(-\dfrac{\sqrt{6}}{2}\) \(0\) \(\dfrac{\sqrt{6}}{2}\) \(\sqrt{3}\) \(+vc\)
\(f'\left(x\right)\) \(+\) || \(-\) \(0\) \(+\) \(0\) \(+\) \(0\) \(-\) || \(0\)
1 Hình như thiếu đề
2. \(f\left(x\right)=\left[{}\begin{matrix}2x\left(x^3-3x\right),x\in\left[-\sqrt{3};0\right]\cup[\sqrt{3};+vc)\\2x\left(3x-x^3\right);x\in\left(-vc,-\sqrt{3}\right)\cup\left(0;\sqrt{3}\right)\end{matrix}\right.\)
\(f'\left(x\right)=\left[{}\begin{matrix}8x^3-12x\\12x-8x^3\end{matrix}\right.\)
Xét \(f'\left(x\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pm\sqrt{6}}{2}\\x=0\end{matrix}\right.\)
Mk làm theo kiểu gộp cả hai biểu thức của f(x) vào chung BBT
x -√3 √3 -√6/2 √6/2 0 -vc vc f'(x) 0 0 0 + + + + - - f(x)
4 cực trị
(Cách xét dấu: trong khoảng \(\left[-\sqrt{3};0\right]\cup[\sqrt{3};+vc)\) xét \(f'\left(x\right)=8x^3-12x\) với nghiệm \(x=-\dfrac{\sqrt{6}}{2};x=0\)
trong khoảng \(\left(-vc,-\sqrt{3}\right)\cup\left(0;\sqrt{3}\right)\)xét \(f'\left(x\right)=12x-8x^3\) với nghiệm \(x=\dfrac{\sqrt{6}}{2}\)
\(x\ne\left\{k\pi\right\}\)
Pt \(\Leftrightarrow\)\(5cosx-3\left(1-cosx\right).\dfrac{cos^2x}{1-cos^2x}=2\)
Đặt \(t=cosx,t\in\left(-1;1\right)\)
Pttt:\(5t-\dfrac{3\left(1-t\right)t^2}{1-t^2}=2\)
\(\Leftrightarrow5t-\dfrac{3t^2}{1+t}=2\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=\dfrac{1}{2}\left(tm\right)\\t=-2\left(vn\right)\end{matrix}\right.\)\(\Rightarrow cosx=\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
Vậy...
\(F=\dfrac{1}{\sqrt{2}}\sqrt{\left(3x-2\right)-2\sqrt{x}\sqrt{3x-2}+x}+\dfrac{1}{\sqrt{2}}\sqrt{9x+2.3\sqrt{x}\sqrt{3x-2}+3x-2}\)
\(=\dfrac{1}{\sqrt{2}}\sqrt{\left(\sqrt{3x-2}-\sqrt{x}\right)^2}+\dfrac{1}{\sqrt{2}}\sqrt{\left(3\sqrt{x}+\sqrt{3x-2}\right)^2}\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{3x-2}-\sqrt{x}\right|+3\sqrt{x}+\sqrt{3x-2}\right)\)
Do \(\sqrt{3x-2}< \sqrt{x}\forall\dfrac{2}{3}< x< 1\)
\(F=\dfrac{1}{\sqrt{2}}\left(\sqrt{x}+3\sqrt{x}\right)=2\sqrt{2x}\)
Theo t: Đi ngược chiều đồng hồ, để đi từ x1->x2 thì các TH xảy ra;
\(A\rightarrow D,A\rightarrow B,C\rightarrow D\)
Nhìn trục Ox, quãng đường từ
\(A\rightarrow D=2A\)
\(C\rightarrow D:A\)
\(A\rightarrow B=3A\)
Nên từ C->D là ngắn nhất
\(\Delta t=\dfrac{\Delta\beta}{\omega}=\dfrac{\dfrac{2.\pi}{6}}{2\pi.5}=\dfrac{1}{30}\left(s\right)\)
Đặt \(u=2^x\Rightarrow x=log_2u\left(=\dfrac{lnu}{ln2}\right)\Rightarrow dx=\dfrac{1}{u.ln2}.du\)
\(\Rightarrow I=\)\(\int\limits^2_1\dfrac{lnu}{ln2}.\dfrac{1}{u.ln2}.u.du=\)\(\dfrac{1}{ln^2}\int\limits^2_1lnu.du\)
Đặt \(\left\{{}\begin{matrix}m=lnu\\dn=du\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}dm=\dfrac{1}{u}.du\\n=u\end{matrix}\right.\)
=> \(I=\dfrac{1}{ln^22}\left[u.lnu|^2_1-\int\limits^2_1u.\dfrac{1}{u}du\right]=\dfrac{1}{ln^22}\left[2.ln2-1\right]=\dfrac{2.ln2-1}{ln^22}\)
\(S=2-1+1=2\)
Ý A
\(y=\dfrac{2+sin^2x}{4}\)
Có \(0\le sin^2x\le1\)
\(\Leftrightarrow2\le sin^2x+2\le3\)
\(\Leftrightarrow\dfrac{1}{2}\le y\le\dfrac{3}{2}\)
\(\Rightarrow miny=\dfrac{1}{2}\) khi \(sinx=0\Leftrightarrow x=k\pi\)
\(\Rightarrow maxy=\dfrac{3}{2}\) khi \(sin^2x=1\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
Sai rồi e êy, \(=\left[{}\begin{matrix}\left(x-6\right)^3,x\ge6\\\left(6-x\right)^3,x< 6\end{matrix}\right.\)
1.Sai đề
2. Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+3}\\b=\sqrt{x+7}\end{matrix}\right.\)
Pt tt: \(ab=3a+2b-6\)
\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x+7}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)