Học tại trường Chưa có thông tin
Đến từ Hải Dương , Chưa có thông tin
Số lượng câu hỏi 5
Số lượng câu trả lời 4
Điểm GP 0
Điểm SP 6

Người theo dõi (2)

TL
XN

Đang theo dõi (2)

NM

Câu trả lời:

Mình chỉ giải thôi hình bn có thể lấy hình bạn bên dưới nhé :v

a) ∆ABC cân, suy ra ˆB1=ˆC1B1^=C1^

⇒ˆABM=ˆACN⇒ABM^=ACN^

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACNABM^=ACN^

BM = ON (gt)

Suy ra ˆM=ˆNM^=N^

=>∆AMN là tam giác cân ở A.

b) Hai tam giác vuông ∆BHM và ∆CKN có :

BM = CN (gt)

ˆM=ˆNM^=N^ (CM từ câu a)

Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)

Suy ra BH = CK.

c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)

Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).

Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK

Vậy AH = AK.

d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2B2^=C2^

ˆB2=ˆB3;ˆC2=ˆC3B2^=B3^;C2^=C3^ (đối đỉnh)

Nên ˆB3=ˆC3B3^=C3^ .

Vậy ∆OBC là tam giác cân.

e) Khi ˆBAC=600BAC^=600 và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=600BAC^=600 nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=1200ABM^=ACN^=1200 (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=1800−12002=300M^=BAM^=1800−12002=300 .

Suy ra ˆANM=ˆAMN=300ANM^=AMN^=300 .

ˆMAN=1800−(ˆAMN+ˆANM)=1800−2.300=1200MAN^=1800−(AMN^+ANM^)=1800−2.300=1200

Vậy ∆AMN có ˆM=ˆN=300;ˆA=1200.M^=N^=300;A^=1200.

+∆BHM có: ˆM=300M^=300 nên ˆB2=600B2^=600 (hai góc phụ nhau)

Suy ra ˆB3=600B3^=600

Tương tự ˆC3=600C3^=600

Tam giác OBC có ˆB3=ˆC3=600B3^=C3^=600 nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).