HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Hòa tan hoàn toàn 17,04 gam hỗn hợp gồm Fe , FeO , Fe 3 O 4 và Fe 2 O 3 trong 660 mol dd HCl 1M dư thu được dd A và 1,68 lít H 2 đktc. Cho AgNO 3 dư vào A thấy thoát ra 0,336 lít khí NO (sản phẩm khử duy nhất) và tạo thành m gam kết tủa. Giá tri của m là
A. 102,81
B. 94,02
C. 99,06
D. 94,71
\(\left(\sqrt{4+\sqrt{15}}\right)^2\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}=\left(\sqrt{4+\sqrt{15}}\sqrt{4-\sqrt{15}}\right)\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
đề sai rồi nha bạn
\(=\sqrt{13+\sqrt{30+\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}+1}}}}=\sqrt{13+\sqrt{30+\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}}}}=\sqrt{13+\sqrt{30+\sqrt{2+\sqrt{\left(2\sqrt{2}\text{+}1\right)^2}}}}=\sqrt{13+\sqrt{30\text{+}\sqrt{2\text{+}2\sqrt{2}+1}}}=\sqrt{13+\sqrt{30+\sqrt{\left(\sqrt{2}+1\right)^2}}}=\sqrt{13+\sqrt{30+\sqrt{2}+1}}=\sqrt{13+\sqrt{31+\sqrt{2}}}\)
\(=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+1=x+\sqrt{x}\)đk \(x>1\)
\(A=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x^2++2xy+y^2\right)}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x-y\right)^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left(x-y\right)}{2}=\dfrac{\sqrt{3}}{x+y}\)
\(B=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{1}{2a-1}\cdot\sqrt{5}a^2\left(2a-1\right)=\sqrt{5}\cdot a^2\)
a) Kẻ đường thẳng BO cắt AC tại K
Vì BOC là góc ngoài của tam giác KOC nên BOC= KOC+OCK
Vì OKC là góc ngoài của tam giác ABK nên OKC=BAK+ABK
Suy ra: BOC= BAK+ABK+OCK hay BOC=A+ABO+ACO
Đặt \(23-n=x^2;n-3=y^2\)
\(\Rightarrow x^2-y^2=23-n+n-3=20\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=20=1\cdot20=2\cdot10=4\cdot5\)\(=-1\cdot\left(-20\right)=-4\cdot\left(-5\right)=-2\cdot\left(-10\right)\)
bạn kẻ bảng tìm x,y
rồi tính x2,y2 . tìm n
\(\dfrac{1}{D}=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\dfrac{2}{\sqrt{x}+1}\)
Để \(\dfrac{1}{D}\) nguyên thì \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{0;2;-1;3\right\}\Leftrightarrow x\in\left\{0;4;9\right\}\)