Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 3
Điểm GP 0
Điểm SP 0

Người theo dõi (0)

Đang theo dõi (0)


Câu trả lời:

1/ Kẻ $CH \perp AB (H \in AB) \\
NK \perp AB ( K \in AB)$
Xét $\triangle{ACH}$ vuông tại $H$ có :
$NK // CH$ ( cùng $\perp AB$ )
$\implies \dfrac{NK}{CH} = \dfrac{AN}{AC} = \dfrac13$ ( Hệ quả Ta-lét )
Ta có : $\dfrac{S_{ANM}}{S_{ABC}} = \dfrac{ \dfrac12.AM.NK}{ \dfrac12.AB.CH} = \dfrac{AM}{AB}.\dfrac{NK}{CH} = \dfrac23.\dfrac13 = \dfrac29$
$\implies S_{AMN} = \dfrac29.S_{ABC} = 12 \; (cm^2)$

2/ Gọi $a,b,c$ lần lượt là độ dài hai cạnh góc vuông và cạnh huyền
Theo đề bài ta có : $a-7=b$
Lại có : $S = \dfrac12.a.b = 30 \; (cm^2)$
$\iff a.(a-7) = 60 \\
\iff a^2-7a-60 = 0 \\
\iff \cdots \\
\iff (a-12)(a+5) = 0 \\
\iff \left[ \begin{array}{l} {} a-12=0 \\ a+5=0 \\ \end{array}
ight. \\
\iff \left[ \begin{array}{l} {} a=12 \\ a=-5 \; \textrm{( loại vì độ dài một cạnh của tam giác không thể âm )} \\ \end{array}
ight. \\
\implies b = a-7 = 12-7 = 5$
Áp dụng định lý Pytago
Tính được $c = \sqrt{a^2+b^2} = 13$
Lại có : $S = \dfrac12.c.AH = 30 \; (cm^2)$
$\implies AH = \dfrac{60}c = \dfrac{60}{13} \approx 4,62 \; (cm^2)$

3/ Do hình vuông cũng là hình thoi
Nên diện tích hình vuông nhận $AB$ làm đường chéo là :
$S = \dfrac12.AB.AB = 98 \; (cm^2) \\
\implies AB^2 = 196 \\
\implies AB = 14 \\
\implies P_{ABCD} = 14.4 = 54 \; (cm^2)$

4/ Dễ cm $\dfrac{AM}{AB} = \dfrac13$
Xét $\triangle{ABC}$ có :
$MN // BC$ ( gt )
$\implies \triangle{AMN} \sim \triangle{ABC}$
Mà $\dfrac{AM}{AB} = \dfrac13$ (cmt)
$\implies$ tỉ số đồng dạng $k = \dfrac13$
$\implies$ tỉ số diện tích $= k^2 = \dfrac19$
$\iff \dfrac{S_{AMN}}{S_{ABC}} = \dfrac19 \\
\implies S_{AMN} = \dfrac19.S_{ABC} = \dfrac19.126 = 14 \; (cm^2)$

5/ Đề chưa rõ