HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
3) Chứng minh tứ giác BHIK là hình thoi.
1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : y = m x + 5.
a) Chứng minh đường thẳng (d) luôn đi qua điểm A(0;5) với mọi giá trị của m.
Giải hệ phương trình x + 2 y − 1 = 5 4 x − y − 1 = 2 .
Cho hai biểu thức A = x + 2 x − 5 và B = 3 x + 5 + 20 − 2 x x − 25 với x ≥ 0 , x ≠ 25
2) Chứng minh rằng B = 1 x − 5 .
Giải các phương trình sau:
a) 5 x + 3 x − 1 = 5 x + 7 ; b) 2 x − 1 4 + 3 = 1 − 3 x 6 ;
c) x − 3 2 − x x + 4 + 5 = 0 ; d) 3 x − 1 x + 2 3 − 2 x 2 + 1 2 = 11 2 .
Quy đồng mẫu thức các phân thức:
a) 1 x + 1 và 6 x − x 2 với x ≠ 0 và x ≠ ± 1 ;
b) y + 5 y 2 + 8 y + 16 và y 3 y + 12 với y ≠ − 4 .