Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 7
Điểm GP 0
Điểm SP 0

Người theo dõi (0)

Đang theo dõi (0)


Câu trả lời:

 

A) Ta cần chứng minh tam giác \(ABD\) đồng dạng tam giác \(HBI\). Để làm điều này, ta cần chứng minh rằng các góc của chúng là bằng nhau.
   - Góc \(ABD\) và \(HBI\) là góc vuông, vì \(AB\) và \(HB\) là đường cao của tam giác \(ABC\).
   - Góc \(ADB\) và \(HIB\) là góc phân giác của tam giác \(ABC\), do đó chúng bằng nhau.

Vậy, ta có thể kết luận tam giác \(ABD\) đồng dạng tam giác \(HBI\).

B) Để chứng minh \(AH^2 = HB \cdot HC\), ta sử dụng định lý đường cao và tính chất của đường cao trong tam giác vuông:
   - \(AH\) là đường cao của tam giác \(ABC\), nên \(AH^2 = BH \cdot HC\).

Vậy, \(AH^2 = HB \cdot HC\).

C) Để chứng minh tam giác \(IAD\) cân và \(DA^2 = DC \cdot IH\), ta sử dụng tính chất của giao điểm của đường phân giác và đường cao:
   - Góc \(IAD\) và \(IDA\) là góc phân giác của tam giác \(ABC\), do đó chúng bằng nhau.
   - \(IH\) là đường cao của tam giác \(ABC\) nên \(DA^2 = DC \cdot IH\).

Vậy, ta chứng minh được tam giác \(IAD\) cân và \(DA^2 = DC \cdot IH\).

D) Để chứng minh \(K, P, Q\) thẳng hàng, ta có thể sử dụng tính chất của điểm trung điểm và đường phân giác:
   - \(Q\) là trung điểm của \(BC\), nên \(Q\) nằm trên đường thẳng \(KP\).
   - \(K\) là giao điểm của \(AH\) và \(BD\), và \(P\) là giao điểm của \(AH\) và \(CI\), nên \(K, P, Q\) thẳng hàng theo Định lý Menelaus trên tam giác \(ACI\) và đường thẳng \(KQ\).

Vậy, ta đã chứng minh được \(K, P, Q\) thẳng hàng.

 

Câu trả lời:

 

A) Ta có thể chứng minh đồng dạng giữa tam giác \(BMI\) và \(ADI\) bằng cách so sánh các góc tương ứng:
   - Góc \(BMI\) và góc \(ADI\) là góc \(BAC\) và góc \(BAD\), vì chúng là góc ở đỉnh đồng dạng.
   - Góc \(BIM\) và góc \(ADI\) là góc vuông vì \(IM\) và \(ID\) là đường cao trong tam giác \(BMI\) và \(ADI\) tương ứng.

Vậy, ta có thể kết luận \(BMI\) đồng dạng \(ADI\).

B) Để chứng minh \(BI \cdot BD = BM \cdot BC\), ta sử dụng định lý Phân đôi đường cao trong tam giác vuông và tính chất của đường cao trong tam giác:

Trong tam giác \(ABD\) vuông tại \(D\):
   - Định lý Phân đôi đường cao: \(BD^2 = BM \cdot BC\)

Vậy, \(BI \cdot BD = BI \cdot \sqrt{BM \cdot BC} = \sqrt{BM \cdot BC} \cdot BD = BM \cdot BC\).

Vậy, ta chứng minh được \(BI \cdot BD = BM \cdot BC\).

C) Để chứng minh \( \angle BIC = \angle BMD \), ta sử dụng tính chất của góc nội tiếp và góc ở tâm:

   - Góc \(BIC\) là góc nội tiếp của đường tròn ngoại tiếp \(ABC\), nên \( \angle BIC = \frac{1}{2} \angle BAC\).
   - Góc \(BMD\) là góc ở tâm của đường tròn ngoại tiếp \(ABCD\), nên \( \angle BMD = \frac{1}{2} \angle BAD\).

Vì \( \angle BAC = \angle BAD\), nên \( \frac{1}{2} \angle BAC = \frac{1}{2} \angle BAD\), và do đó \( \angle BIC = \angle BMD\).

Vậy, ta chứng minh được \( \angle BIC = \angle BMD\).