\(a,10+\sqrt{x^2-2x+1}=13\Leftrightarrow\sqrt{\left(x-1\right)^2}=3\Leftrightarrow\left|x-1\right|=3\)
\(TH_1:x\ge1\\ x-1=3\Leftrightarrow x=4\left(tm\right)\\ TH_2:x< 1\\ -x+1=3\Leftrightarrow-2\)
Vậy \(S=\left\{4;-2\right\}\)
\(b,\sqrt{4x^2-4x+1}-x=3\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3+x\Leftrightarrow\left|2x-1\right|=3+x\)
\(TH_1:x\ge\dfrac{1}{2}\\ 2x-1=3+x\Leftrightarrow x=4\left(tm\right)\\ TH_2:x< \dfrac{1}{2}\\ -2x+1=3+x\Leftrightarrow-3x=2\Leftrightarrow x=-\dfrac{2}{3}\left(tm\right)\)
Vậy \(S=\left\{4;-\dfrac{2}{3}\right\}\)
\(c,\sqrt{9\left(2x+5\right)^2}-12=0\Leftrightarrow3\sqrt{\left(2x+5\right)^2}=12\Leftrightarrow\left|2x+5\right|=4\)
\(TH_1:x\ge-\dfrac{5}{2}\\ 2x+5=4\Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\\ TH_2:x< -\dfrac{5}{2}\\ -2x-5=4\Leftrightarrow x=-\dfrac{9}{2}\left(tm\right)\)
Vậy \(S=\left\{-\dfrac{1}{2};-\dfrac{9}{2}\right\}\)
\(d,\sqrt{x^2+6x+9}+2=4x\Leftrightarrow\sqrt{\left(x+3\right)^2}=4x-2\Leftrightarrow\left|x+3\right|=4x-2\)
\(TH_1:x\ge-3\\ x+3=4x-2\Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\\ TH_2:x< -3\\ -x-3=4x-2\Leftrightarrow-x-4x=-2+3\Leftrightarrow-5x=1\Leftrightarrow x=-\dfrac{1}{5}\left(ktm\right)\)
Vậy \(S=\left\{-\dfrac{1}{3}\right\}\)