a) Xét ΔABMΔ��� có :
ˆMAB=ˆMBA(gt)���^=���^(��)
=> ΔABMΔ��� cân tại M
Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�
Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^
=> 90o=30o−ˆMAC90�=30�−���^
=> ˆMAC=90o−60o���^=90�−60�
=> ˆMAC=60o���^=60�
b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)
=> 120o+ˆAMC=180o120�+���^=180�
=> ˆAMC=180o−120o���^=180�−120�
=> ˆAMC=60o���^=60�
Xét ΔAMCΔ��� có :
ˆMAC=ˆAMC(=60o)���^=���^(=60�)
=> ΔAMCΔ��� cân tại A
Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�
Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�
Do đó ΔAMCΔ��� là tam giác đều (đpcm)
- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)
=> BM=AM��=�� (tính chất tam giác cân)
Mà có : ΔAMCΔ��� cân tại M (cmt)
=> AM=MC��=�� (tính chất tam giác cân) (2)
- Từ (1) và (2) => BM=MC(=AC)��=��(=��)
Mà : BM=12BC��=12��
Do vậy : AC=12BC