HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh \(\dfrac{1}{a+b-c}\)+\(\dfrac{1}{b+c-a}\)+\(\dfrac{1}{c+a-b}\)≥\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)
Mọi người giúp mình nhé
Cho x,y,z khác 0 và x+y+z=0. Tính giá trị biểu thức\(\dfrac{xy}{x^2+y^2-z^2}\)+\(\dfrac{xz}{x^2+z^2-y^2}\)+\(\dfrac{yz}{y^2+z^2-x^2}\)
Mong mọi người giúp đỡ
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^8+b^8+c^8}{a^3+b^3+c^3}\)≥\(\dfrac{b}{ac}\)+\(\dfrac{c}{ab}\)+\(\dfrac{a}{bc}\)
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)