uh, lớp mik năm nay là 6 Cát Bà đấy =)))
2 thử, cho một chuyến đi xa cũng tuyệt=))
thấy chưa Tiệp?
Ta có: \(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\)( ĐK : \(n\ne-1\))
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)=\left\{13;-13;1;-1\right\}\)
Ta có bảng sau
n+1 | 13 | -13 | 1 | -1 |
n | 12 | -14 | 0 | -2 |
Vậy để \(\dfrac{2n+15}{n+1}\) là số nguyên thì \(n\in\left\{12;-14;0;-2\right\}\)
Chúc bạn học tốt
bằng 100cm2 nhé