Luyện tập chung trang 74

QL
Hướng dẫn giải Thảo luận (1)

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)

Do đó:

\(BC=EF = 6cm\) ( 2 cạnh tương ứng)

\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)

\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}\widehat {ABC} = \widehat {DEF} (= {70^\circ })\\AB = DE\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\( \Rightarrow \Delta ABC{\rm{  = }}\Delta DEF\)(g.c.g)

\( \Rightarrow DF = AC\)( 2 cạnh tương ứng)

Mà AC = 6 cm

\( \Rightarrow DF = 6cm\)

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

a)Xét hai tam giác AEC và AED có

\(EC = ED\)

\(\widehat {CEA} = \widehat {DEA}\)

AE chung

\( \Rightarrow \Delta AEC{\rm{  =  }}\Delta AED\)(c.g.c)

b)

Do \(\Delta AEC{\rm{  =  }}\Delta AED\) nên \(\widehat {CAE} = \widehat {DAE}\) ( 2 góc tương ứng) và AC=AD ( 2 cạnh tương ứng).

Xét \(\Delta ABC\) và \(\Delta ABD\) có:

AB chung

\(\widehat {CAE} = \widehat {DAE}\)

AC=AD

\( \Rightarrow \Delta ABC = \Delta ABD\)(c.g.c)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Trong \(\Delta OAC\) có: \(\widehat {AOC}+\widehat {OAC}+\widehat {OCA}=180^0\)

Trong \(\Delta OBC\) có: \(\widehat {BOC}+\widehat {OBC}+\widehat {OCB}=180^0\)

Mà \(\widehat {AOC} = \widehat {BOC}\)(do Oz là phân giác góc xOy) và \(\widehat {CAO}=\widehat {CBO}\) 

Do đó, \(\widehat {OCA}=\widehat {OCB}\).

Xét \(\Delta OAC\) và \(\Delta OBC\) có:

\(\widehat {AOC} = \widehat {BOC}\) (cmt)

OC chung

\(\widehat {OCA} = \widehat {OCB}(cmt)\)

\(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g)

b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng)

Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù

    \(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù

Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\)

Xét \(\Delta MAC\) và \(\Delta MBC\) có:

AC=BC (cmt)

\(\widehat {ACM} = \widehat {BCM}\) (cmt)

CM chung

\( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)

Trả lời bởi Kiều Sơn Tùng