Hãy giải thích: Nếu M là một điểm tùy ý nằm trên cạnh BC hoặc cạnh CD của hình vuông ABCD thì độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó. (H.9.21)
Hãy giải thích: Nếu M là một điểm tùy ý nằm trên cạnh BC hoặc cạnh CD của hình vuông ABCD thì độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó. (H.9.21)
Hỏi có tam giác nào với độ dài ba cạnh là 2,5 cm; 3,4 cm và 6 cm không? Vì sao?
Ta có: 2,5 + 3,4 = 5,9 cm < 6 cm nên không có tam giác nào với độ dài ba cạnh là 2,5 cm; 3,4 cm và 6 cm.
Trả lời bởi Hà Quang MinhTính chu vi của tam giác cân biết hai cạnh của nó có độ dài là 2 cm và 5 cm.
Vì tam giác đã cho cân nên cạnh còn lại có độ dài là 2 cm hoặc 5 cm.
+) Nếu độ dài cạnh còn lại là 2 cm:
Ta có: 2 + 2 < 5 ( không thỏa mãn bất đẳng thức tam giác) (Loại).
+) Nếu độ dài cạnh còn lại là 5 cm:
2 + 5 > 5 (thỏa mãn bất đẳng thức tam giác)
Do đó, độ dài cạnh còn lại của tam giác là 5 cm.
Chu vi tam giác đó là:
2 + 5 + 5 = 12 ( cm)
Trả lời bởi Hà Quang MinhĐộ dài hai cạnh của một tam giác bằng 7 cm và 2 cm. Tính độ dài cạnh còn lại biết rằng số đo của nó theo xentimet là một số tự nhiên lẻ.
Gọi độ dài cạnh cần tìm là x ( cm) ( x là số tự nhiên lẻ)
Áp dụng bất đẳng thức tam giác vào tam giác đã cho, ta có:
7 – 2 < x < 7 + 2
5 < x < 9
Mà x là số tự nhiên lẻ
\( \Rightarrow \) x = 7
Vậy độ dài cạnh còn lại của tam giác đó là 7 cm.
Trả lời bởi Hà Quang MinhBiết rằng hai cạnh của tam giác có độ dài a và b. Dựa vào bất đẳng thức tam giác, hãy giải thích tại sao chu vi của tam giác đó lớn hơn 2a và nhỏ hơn 2(a+b).
Gọi độ dài cạnh còn lại của tam giác là c.
Áp dụng bất đẳng thức tam giác, ta có:
a – b < c < a + b
\( \Leftrightarrow \)a – b + a + b < c + a + b < a + b + a + b
\( \Leftrightarrow \)2a < chu vi tam giác < 2 (a+b)
Vậy chu vi của tam giác đó lớn hơn 2a và nhỏ hơn 2(a+b).
Trả lời bởi Hà Quang MinhHai khu vườn A và B nằm về một phía của con kênh d. Hãy xác định bên bờ kênh cùng phía với A và B, một điểm C để đặt máy bơm nước từ kênh tưới cho hai khu vườn sao cho tổng độ dài đường ống dẫn nước từ máy bơm đế hai khu vườn là ngắn nhất.
Gọi B’ là điểm sao cho d là đường trung trực của BB’
Khi đó, CB = CB’ ( tính chất đường trung trực của đoạn thẳng)
+) Nếu A,C,B’ không thẳng hàng thì ta lập được tam giác AB’C. Khi đó, theo bất đẳng thức tam giác, ta có:
AC + CB’ > AB’ hay AC + CB > AB’, tức là độ dài đường ống dẫn nước lớn hơn độ dài AB’.
+) Nếu A,C,B’ thẳng hàng thì C nằm giữa A và B’ nên AC + CB’ = AB’, tức là độ dài đường ống dẫn nước bằng độ dài AB’.
Vậy khi đặt điểm C nằm trên bờ kênh d, sao cho A,C,B’ thẳng hàng thì tổng độ dài đường ống dẫn nước từ máy bơm đế hai khu vườn là ngắn nhất .
Trả lời bởi Hà Quang Minh
Vì ABCD là hình vuông nên BC = CD ( tính chất)
* Với M nằm trên cạnh BC, ta xét 2 trường hợp sau:
+) M khác B
AB là đường vuông góc kẻ từ A đến BC; AM là đường xiên kẻ từ A đến BC nên AB < AM ( đường vuông góc luôn nhỏ hơn đường xiên). Do đó, AM lớn hơn độ dài cạnh của hình vuông
+) M trùng B:
AM = AB. Do đó, AM bằng độ dài cạnh của hình vuông
Trường hợp M nằm trên cạnh CD tương tự.
Vậy độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó.
Trả lời bởi Hà Quang Minh