Bài tập cuối chương IV

QL
Hướng dẫn giải Thảo luận (1)

a) Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {3^2} + {4^2} - 2.3.4.\cos {120^o}\\ \Leftrightarrow B{C^2} = 37\\ \Leftrightarrow BC \approx 6\end{array}\)

Áp dụng định lí sin trong tam giác ABC, ta có:

 \(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = 2R\\ \Rightarrow \sin B = \frac{{AC.\sin A}}{{BC}} = \frac{{4.\sin {{120}^o}}}{6} = \frac{{\sqrt 3 }}{3}\\ \Leftrightarrow \widehat B \approx {35^o}\end{array}\)

b) \(R = \frac{{BC}}{{2.\sin A}} = \frac{6}{{2.\sin {{120}^o}}} = 2\sqrt 3 \)

c) Diện tích tam giác ABC: \(S = \frac{1}{2}4.3.\sin {120^o} = 3\sqrt 3 .\)

d) Gọi H là chân đường cao hạ từ đỉnh A.

Ta có: \(S = \frac{1}{2}AH.BC\)

\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2.3\sqrt 3 }}{6} = \sqrt 3 \)

e) \(\overrightarrow {AB} .\overrightarrow {AC}  = 3.4.\cos (\widehat {BAC}) = 12.\cos {120^o} =  - 6.\)

Ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \) (do M là trung điểm BC)

\( \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )\)

\(\begin{array}{l} \Rightarrow \overrightarrow {AM} .\overrightarrow {BC}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )(\overrightarrow {AC}  - \overrightarrow {AB} )\\ = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2}} \right) = \frac{1}{2}\left( {A{C^2} - A{B^2}} \right)\\ = \frac{1}{2}\left( {{4^2} - {3^2}} \right) = \frac{7}{2}.\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} =  - \cos {70^o} =  - \sin {20^o}\)

\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)

Ta có: \(\tan {110^o} =  - \tan {70^o} =  - \cot {20^o};\;\cot {110^o} =  - \cot {70^o} =  - \tan {20^o}.\)

\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Áp dụng định lí cosin trong tam giác OAB, ta có:

\(\begin{array}{l}\cos O = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}} = \frac{{{2^2} + {2^2} - 3,{1^2}}}{{2.2.2}} \approx  - 0,2\\ \Rightarrow \widehat {xOy} \approx {102^o}\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\widehat C = {180^o} - {60^o} - {45^o} = {75^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)

\( \Rightarrow \left\{ \begin{array}{l}AC = \frac{{\sin B.AB}}{{\sin C}}\\BC = \frac{{\sin A.AB}}{{\sin C}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}AC = \frac{{\sin {{45}^o}.1200}}{{\sin {{75}^o}}} \approx 878\\BC = \frac{{\sin {{60}^o}.1200}}{{\sin {{75}^o}}} \approx 1076\end{array} \right.\)

Vậy AC = 878 m, BC = 1076 m.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\widehat C = {65^o} - {35^o} = {30^o}\)(tính chất góc ngoài)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \frac{{AB.\sin B}}{{\sin C}}\)

\( \Leftrightarrow AC = \frac{{50.\sin ({{180}^o} - {{65}^o})}}{{\sin {{30}^o}}} \approx 90,63.\)

Độ rộng của khúc sông là: \(AC.\sin A = 90,63.\sin {35^o} \approx 52\;(m)\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Áp dụng định lí cosin cho tam giác MON, ta có:

\(\begin{array}{l}M{N^2} = M{O^2} + O{N^2} - 2.OM.ON.\cos MON\\ \Rightarrow M{N^2} = {200^2} + {500^2} - 2.200.500.\cos {135^o}\\ \Rightarrow M{N^2} \approx 431421\\ \Rightarrow MN \approx 657\;(m)\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Với E là điểm bất kì, ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {CE}  = \overrightarrow {AC}  + \overrightarrow {CE}  = \overrightarrow {AE} \)

b) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \).

Với hai điểm bất kì M, N ta có:

 \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {IN}  = 2\overrightarrow {MI}  + 2\overrightarrow {IN}  = 2\left( {\overrightarrow {MI}  + \overrightarrow {IN} } \right) = 2\overrightarrow {MN} .\)

c) Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Với hai điểm bất kì M, N ta có:

\(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  - 3\overrightarrow {MN}  = 3\overrightarrow {MG}  - 3\overrightarrow {MN}  = 3\left( {\overrightarrow {MG}  - \overrightarrow {MN} } \right) = 3\overrightarrow {NG} \).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} ;\;\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

b) \(\overrightarrow {AB} .\overrightarrow {AD}  = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD}  = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC}  = (\overrightarrow {AD}  - \overrightarrow {AB} )(\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)

c) Áp dụng định lí cosin cho tam giác ABD ta có:

\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\overrightarrow {{F_1}}  = \overrightarrow {OA} ,\;\overrightarrow {{F_2}}  = \overrightarrow {OB}= \overrightarrow {AC}  \)

Khi đó: Hợp lực \(\overrightarrow F \)  là \(\overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OB} \).

Áp dụng định lí cosin cho tam giác OAC, ta có:

\(\begin{array}{*{20}{l}}
{\;\;\;{\mkern 1mu} {\kern 1pt} \;O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos A}\\
\begin{array}{l}
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos ({180^o} - \alpha )\\
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} + 2.OA.AC.\cos \alpha
\end{array}\\
{ \Leftrightarrow \left| {\vec F} \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \alpha } }
\end{array}\)

Trả lời bởi Hà Quang Minh