Bài tập cuối chương 1

QL
Hướng dẫn giải Thảo luận (1)

Ta có

\(\begin{array}{l}\cot x{\rm{ }} = {\rm{  - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot  - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

Vậy phương trình đã cho có  nghiệm là \(x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\)

Chọn A

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có

\(\begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\frac{\pi }{4} + k2\pi ;k \in Z\\x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\pi {\rm{ - }}\frac{\pi }{4} + k2\pi ;k \in Z\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {\rm{ }}k2\pi ;k \in Z\\x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k2\pi ;k \in Z\end{array} \right.\end{array}\)

Mà \(x \in \left[ {0;\pi } \right]\) nên \(x \in \left\{ {0;\frac{\pi }{2}} \right\}\)

Vậy phương trình đã cho có số nghiệm là 2.

Chọn C

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có :

\(\cos \left( {a + b} \right)\cos \left( {a - b} \right) = \frac{1}{2}\left( {\cos 2a + \cos 2b} \right) = \frac{1}{2}\left( {2{{\cos }^2}a - 1 + 2{{\cos }^2}b - 1} \right) = 0\)

Chọn A

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có

\(\begin{array}{l}\sin x{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow \sin x{\rm{ }} = {\rm{ sin 0}}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}k\pi ;k \in Z\end{array}\)

Mà \(x \in \left[ {0;10\pi } \right]\) nên

 \(\begin{array}{l}0 \le k\pi  \le 10\pi \\ \Rightarrow 0 \le k \le 10\end{array}\)

Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\)

Vậy phương trình đã cho có số nghiệm là 11.

Chọn D

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có :

\(\sin \left( {a + \frac{\pi }{4}} \right) + \sin \left( {a - \frac{\pi }{4}} \right) = 2.\sin a.\cos \frac{\pi }{4} =  - \frac{2}{3}\)

Chọn C

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có \(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{1}{4}} \right)^2} - 1 = \frac{{ - 7}}{8}\)

Chọn B

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Hàm số nghịch biến trên khoảng \(\left( {\pi ;2\pi } \right)\) là:\(y = \cos x\)

Chọn B

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Hàm số y = sinx đồng biến trên khoảng: \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)

Chọn C

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có :

\(\begin{array}{l}\tan \left( {a + b} \right) = 3\\ \Rightarrow \frac{{tana + \tan b}}{{1 - \tan a.\tan b}} = 3\\ \Rightarrow tana + \tan b = 3(1 - \tan a.\tan b)\,\,\,\,\,\,(1)\\\tan \left( {a - b} \right) =  - 3\\ \Rightarrow \frac{{tana - \tan b}}{{1 + \tan a.\tan b}} = 3\\ \Rightarrow tana - \tan b = 3(1 + \tan a.\tan b)\,\,\,\,\,\,(2)\end{array}\)

Cộng theo vế của (1) và (2) ta có

\(\tan a = 3\)

Ta có

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.3}}{{1 - {3^2}}} = \frac{{ - 3}}{4}\)

Chọn D

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có

\(\begin{array}{l}cosx{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow cosx{\rm{ }} = {\rm{ cos}}\frac{\pi }{2}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k\pi ;k \in Z\end{array}\)

Mà \(x \in \left[ {0;10\pi } \right]\) nên

 \(\begin{array}{l}0 \le \frac{\pi }{2} + k\pi  \le 10\pi \\ \Rightarrow  - 0,5 \le k \le 9,5\end{array}\)

Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\)

Vậy phương trình đã cho có số nghiệm là 10.

Chọn C

Trả lời bởi Hà Quang Minh