Khi máu di chuyển từ tim qua các động mạch chính rồi đến các mao mạch và quay trở lại qua các tĩnh mạch, huyết áp tâm thu (tức là áp lực của máu lên động mạch khi tim co bóp) liên tục giảm xuống. Giả sử một người có huyết áp tâm thu P (tính bằng mmHg) được cho bởi hàm số \(P\left( t \right) = \frac{{25{t^2} + 125}}{{{t^2} + 1}},0 \le t \le 10\), trong đó thời gian t được tính bằng giây. Tính tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim.
Hàm số thể hiện tốc độ thay đổi của huyết áp là:
\(y = P'\left( t \right) = \frac{{50t\left( {{t^2} + 1} \right) - 2t\left( {25{t^2} + 125} \right)}}{{{{\left( {{t^2} + 1} \right)}^2}}} = \frac{{ - 200t}}{{{{\left( {{t^2} + 1} \right)}^2}}}\)
Tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim là: \(y\left( 5 \right) = \frac{{ - 200.5}}{{{{\left( {{5^2} + 1} \right)}^2}}} = \frac{{ - 250}}{{169}}\)
Tốc độ thay đổi huyết áp sau 5 giây kể từ khi máu rời tim là giảm \(\frac{{250}}{{169}}\).
Trả lời bởi Hà Quang Minh