Bài 5. Phép chia đa thức một biến

QL
Hướng dẫn giải Thảo luận (1)

Để thực hiện phép chia một đa thức cho một đa thức khác, ta làm như sau:

Bước 1:

-        Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.

-        Nhân kết quả trên với đa thức chia và đặt tích dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.

-        Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.

Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \({x^5}:{x^3} = {x^{5 - 3}} = {x^2}\);

b) \((4{x^3}):{x^2} = (4:1).({x^3}:{x^2}) = 4x\);

c) \((a{x^m}):(b{x^n}) = (a:b).({x^m}:{x^n}) = (a:b).{x^{m - n}}\)(a ≠ 0; b ≠ 0; m, n \(\in\) N, m ≥ n).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \((3{x^6}):(0,5{x^4}) = (3:0,5).({x^6}:{x^4}) = 6.{x^{6 - 4}} = 6{x^2}\);

b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}}) = ( - 12:4).({x^{m + 2}}:{x^{n + 2}}) =  - 3.{x^{m + 2 - n - 2}} =  - 3.{x^{m - n}}\)(m, n \(\in\) N, m ≥ n).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: Diện tích hình chữ nhật MNPQ bằng diện tích hình chữ nhật (I) + diện tích hình chữ nhật (II)

\( = ac + bc = (a + b).c\).

Mà MN = c 

Do đó NP = \((a + b).c:c = a + b\).

b) Ta có:

\(\begin{array}{l}(A + B):c = (ac + bc):c = a + b\\A:c + B:c = ac:c + bc:c = a + b\end{array}\)

Vậy  \((A + B):c\) =\(A:c + B:c\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Các đơn thức có trong đa thức P(x) là: \(4{x^2};3x\).

Chia từng đơn thức (của biến x) có trong đa thức P(x) cho đơn thức Q(x) được kết quả lần lượt là:

\(4{x^2}:2x = (4:2).({x^2}:x) = 2x\).

\(3x:2x = (3:2).(x:x) = \dfrac{3}{2}\).

b) Cộng các thương vừa tìm được \( = 2x + \dfrac{3}{2}\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

\(\begin{array}{l}(\dfrac{1}{2}{x^4} - \dfrac{1}{4}{x^3} + x):( - \dfrac{1}{8}x) = \dfrac{1}{2}{x^4}:( - \dfrac{1}{8}x) - \dfrac{1}{4}{x^3}:( - \dfrac{1}{8}x) + x:( - \dfrac{1}{8}x)\\ = (\dfrac{1}{2}: - \dfrac{1}{8}).({x^4}:x) - (\dfrac{1}{4}: - \dfrac{1}{8}).({x^3}:x) + (1: - \dfrac{1}{8}).(x:x)\\ =  - 4.{x^{4 - 1}} - ( - 2).{x^{3 - 1}} + ( - 8).{x^{1 - 1}}\\ =  - 4{x^3} + 2{x^2} - 8\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)

Vậy \(({x^3} + 1):({x^2} - x + 1) = x + 1\).

b)

Vậy \((8{x^3} - 6{x^2} + 5) = ({x^2} - x + 1)(8x + 2) + ( - 6x + 3)\)

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

a) \((4{x^3}):( - 2{x^2})\\= [4: (- 2)].({x^3}:{x^2})\\ =  - 2.{x^{3 - 2}}\\ =  - 2x\);

b) \(( - 7{x^2}):(6x) \\= ( - 7:6).({x^2}:x) \\=  - \dfrac{7}{6}.{x^{2 - 1}}\\ =  - \dfrac{7}{6}.x\);

c) \(( - 14{x^4}):( - 8{x^3}) \\= ( - 14: - 8).({x^4}:{x^3})\\= \dfrac{7}{4}.{x^{4 - 3}} \\= \dfrac{7}{4}.x\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(\begin{array}{l}(8{x^3} + 2{x^2} - 6x):(4x) = 8{x^3}:(4x) + 2{x^2}:(4x) - (6x):(4x)\\ = (8:4).({x^3}:x) + (2:4).({x^2}:x) - (6:4).(x:x)\\ = 2{x^2} + \dfrac{1}{2}x - \dfrac{3}{2}\end{array}\)

b) \(\begin{array}{l}(5{x^3} - 4x):( - 2x) = 5{x^3}:( - 2x) - 4x:( - 2x) = (5: - 2).({x^3}:x) - (4: - 2).(x:x)\\ =  - \dfrac{5}{2}{x^{3 - 1}} - ( - 2) =  - \dfrac{5}{2}{x^2} + 2\end{array}\)

c) \(\begin{array}{l}( - 15{x^6} - 24{x^3}):( - 3{x^2}) = ( - 15{x^6}):( - 3{x^2}) + ( - 24{x^3}):( - 3{x^2})\\ = ( - 15: - 3).({x^6}:{x^2}) + ( - 24: - 3).({x^3}:{x^2})\\ = 5.{x^{6 - 2}} + 8.{x^{3 - 2}} = 5{x^4} + 8x\end{array}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Vậy \(( - 32{x^5} + 1):( - 2x + 1) = 16{x^4} + 8{x^3} + 4{x^2} + 2x + 1\).

Trả lời bởi Kiều Sơn Tùng