Cho \(A = \left\{ {{a_1};{a_2};{a_3};{a_4};{a_5}} \right\}\) là một tổ hợp có 5 phần tử. Chứng minh rằng tổ hợp con có số lẻ \(\left( {1,3,5} \right)\) phần tử của A bằng tập hợp con có số chẵn \(\left( {0,2,4} \right)\) phần tử của A.
Cho \(A = \left\{ {{a_1};{a_2};{a_3};{a_4};{a_5}} \right\}\) là một tổ hợp có 5 phần tử. Chứng minh rằng tổ hợp con có số lẻ \(\left( {1,3,5} \right)\) phần tử của A bằng tập hợp con có số chẵn \(\left( {0,2,4} \right)\) phần tử của A.
Chứng minh rằng \(C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = 0\).
\(\begin{array}{l}C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5\\ = C_5^0{.1^5} - C_5^1{.1^4}.1 + C_5^2{.1^3}{.1^2} - C_5^3{.1^2}{.1^3} + C_5^4{.1.1^4} - C_5^5{.1^5}\\ = {\left( {1 - 1} \right)^5} = {0^5}\\ = 0\end{array}\)
Vậy ta có điều phải chứng minh
Cách 2:
Ta có: \(C_5^0 = C_5^{5 - 0} = C_5^5\)
Tương tự: \(C_5^1 = C_5^{5 - 1} = C_5^4;\;C_5^2 = C_5^{5 - 2} = C_5^3;\)
\(\Rightarrow C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = \left( {C_5^0 - C_5^5} \right) + \left( {C_5^4 - C_5^1} \right) + \left( {C_5^2 - C_5^3} \right) = 0\) (đpcm)
Trả lời bởi Hà Quang MinhTrên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong các số vé đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.
Mỗi lựa chọn mua vé của khách hàng đó là một tổ hợp chập k của 4 \(\left( {0 \le k \le 4} \right)\). Do đó, tổng số lựa chọn mua vé của khách hàng là
\(\begin{array}{l}C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4\\ = C_4^0{.1^4} + C_4^1{.1^3}.1 + C_4^2{.1^2}{.1^2} + C_4^3{.1.1^3} + C_4^4{.1^4}\\ = {\left( {1 + 1} \right)^4} = {2^4}\\ = 16\end{array}\)
Vậy có tất cả 16 lựa chọn mua một số vé trong số các vé xổ số đó.
Trả lời bởi Hà Quang MinhTìm hệ số của \({x^3}\) trong khai triển \({\left( {3x - 2} \right)^5}\)
Áp dụng công thức nhị thức Newton ta có
Hệ số \({x^3}\) là hệ số của số hạng \(C_5^3{\left( {3x} \right)^3}{\left( { - 2} \right)^2} = 1080{x^3}\)
Vậy hệ số của \({x^3}\) là 1080
Trả lời bởi Hà Quang MinhSử dụng công thức nhị thức Newton, khai triển các biểu thức sau:
a) \({\left( {3x + y} \right)^4}\)
b) \({\left( {x - \sqrt 2 } \right)^5}\)
a) \({\left( {3x + y} \right)^4} = {\left( {3x} \right)^4} + 4.{\left( {3x} \right)^3}y + 6.{\left( {3x} \right)^2}{y^2} + 4.\left( {3x} \right){y^3} + {y^4}\)
\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\)
b) \(\begin{array}{l}{\left( {x - \sqrt 2 } \right)^5} = \left( {x + (-\sqrt 2) } \right)^5 ={x^5} + 5.{x^4}.\left( { - \sqrt 2 } \right) + 10.{x^3}.{\left( { - \sqrt 2 } \right)^2} + 10.{x^2}.{\left( { - \sqrt 2 } \right)^3} + 5.x.{\left( { - \sqrt 2 } \right)^4} + 1.{\left( { - \sqrt 2 } \right)^5}\\ = {x^5} - 5\sqrt 2 .{x^4} + 20{x^3} - 20\sqrt 2 .{x^2} + 20x - 4\sqrt 2 \end{array}\)
Trả lời bởi Hà Quang MinhSử dụng công thức nhị thức Newton, chứng tỏ rằng
a) \(C_4^0 + 2C_4^1 + {2^2}C_4^2 + {2^3}C_4^3 + {2^4}C_4^4 = 81\)
b) \(C_4^0 - 2C_4^1 + {2^2}C_4^2 - {2^3}C_4^3 + {2^4}C_4^4 = 1\)
a)
\(\begin{array}{l}C_4^0 + 2C_4^1 + {2^2}C_4^2 + {2^3}C_4^3 + {2^4}C_4^4\\ = {1^4}.C_4^0 + {1^3}.2C_4^1 + {1^2}{.2^2}C_4^2 + {1.2^3}C_4^3 + {2^4}C_4^4\\ = {\left( {1 + 2} \right)^4} = {3^4}\end{array}\)
\( = 81\) (đpcm)
b)
\(\begin{array}{l}C_4^0 - 2C_4^1 + {2^2}C_4^2 - {2^3}C_4^3 + {2^4}C_4^4\\ = {1^4}.C_4^0 - {1^3}.2C_4^1 + {1^2}{.2^2}C_4^2 - {1.2^3}C_4^3 + {2^4}C_4^4\\ = {\left( {1 - 2} \right)^4} = {\left( { - 1} \right)^4}\end{array}\)
\( = 1\) (đpcm)
Trả lời bởi Hà Quang Minha) Xét công thức khai triển \({\left( {a + b} \right)^2} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)
i) Liệt kê các số hạng của khai triển trên
ii) Liệt kê các hệ số của khai triển trên
iii) Tính giá trị của \(C_3^0,C_3^1,C_3^2,C_3^3\) (có thể sử dụng máy tính) rồi so sánh với các hệ số trên. Có nhận xét gì?
b) Hoàn thành biến đổi sau đây để tìm công thức khai triển của \({\left( {a + b} \right)^4}\)
\({\left( {a + b} \right)^4} = \left( {a + b} \right){\left( {a + b} \right)^3} = ? = ?{a^4} + ?{a^3}b + ?{a^2}{b^2} + ?a{b^3} + ?{b^4}\)
Tính giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) để viết lại công thức khai triển trên
c) Từ kết quả của câu a) và b), hãy dự đoán công thức khai triển của \({\left( {a + b} \right)^5}\). Tính toán để kiểm tra dự đoán đó.
a)
i) Các số hạng của khai triển trên là: \({a^3},3{a^2}b,3a{b^2},{b^3}\)
ii) Các hệ số của khai triển trên là: \(1;3;3;1\)
iii) Tính các giá trị \(C_3^0,C_3^1,C_3^2,C_3^3\) ta được
\(C_3^0 = 1,C_3^1 = 3,C_3^2 = 3,C_3^3 = 1\)
Các giá trị của \(C_3^0,C_3^1,C_3^2,C_3^3\) bằng với các hệ số của khai triển đã cho
b)
\(\begin{array}{l}{\left( {a + b} \right)^4} = \left( {a + b} \right){\left( {a + b} \right)^3} = \left( {a + b} \right)\left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\end{array}\)
Tính giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) ta được
\(C_4^0 = 1,C_4^1 = 4,C_4^2 = 6,C_4^3 = 4,C_4^4 = 1\)
Vậy ta được khai triển là:
\({\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\)
c)
Dự đoán công thức \({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
Tính lại ta có
\(\begin{array}{l}{\left( {a + b} \right)^5} = {\left( {a + b} \right)^2}{\left( {a + b} \right)^3} = \left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\end{array}\)
Vậy công thức dự đoán là chính xác.
Trả lời bởi Hà Quang MinhÁp dụng công thức nhị thức Newton, ta có công thức khai triển của biểu thức \({\left( {a + b} \right)^n}\) với \(n > 3\) là
\(\begin{array}{l}{\left( {a + b} \right)^n} = {a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 2}{a^2}{b^{n - 2}} + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\\ = \sum\limits_{k = 0}^n {C_n^k} {a^{n - k}}{b^k}\end{array}\)
Trả lời bởi Hà Quang MinhKhai triển các biểu thức sau
a) \({\left( {x - 2} \right)^4}\)
b) \({\left( {x + 2y} \right)^5}\)
a) \({\left( {x - 2} \right)^4}\)
\(\begin{array}{l} = {x^4} + 4{x^3}.\left( { - 2} \right) + 6{x^2}.{\left( { - 2} \right)^2} + 4x{\left( { - 2} \right)^3} + {\left( { - 2} \right)^4}\\ = {x^4} - 8{x^3} + 24{x^2} - 32x + 16\end{array}\)
b) \({\left( {x + 2y} \right)^5}\)
\(\begin{array}{l} = {x^5} + 5.{x^4}.\left( {2y} \right) + 10.{x^3}.{\left( {2y} \right)^2} + 10.{x^2}.{\left( {2y} \right)^3} + 5.x.{\left( {2y} \right)^4} + 1.{\left( {2y} \right)^5}\\ = {x^5} + 10{x^4}y + 40{x^3}{y^3} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}\end{array}\)
Trả lời bởi Hà Quang MinhKhai triển và rút gọn các biểu thức sau:
a) \({\left( {2 + \sqrt 2 } \right)^4}\)
b) \({\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4}\)
c) \({\left( {1 - \sqrt 3 } \right)^5}\)
a) Áp dụng công thức nhị thức Newton, ta có
\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\\ = \left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right] + \left[ {{{4.2}^3}.\left( {\sqrt 2 } \right) + 4.2.{{\left( {\sqrt 2 } \right)}^3}} \right]\\ = 68 + 48\sqrt 2 \end{array}\)
b) Áp dụng công thức nhị thức Newton, ta có
\({\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\)
\({\left( {2 - \sqrt 2 } \right)^4} = \left( {2 +(- \sqrt 2 )} \right)^4= {2^4} + {4.2^3}.\left( { - \sqrt 2 } \right) + {6.2^2}.{\left( { - \sqrt 2 } \right)^2} + 4.2.{\left( { - \sqrt 2 } \right)^3} + {\left( { - \sqrt 2 } \right)^4}\)
Từ đó,
\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4} = 2\left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right]\\ = 2\left( {16 + 48 + 4} \right) = 136\end{array}\)
c) Áp dụng công thức nhị thức Newton, ta có
\(\begin{array}{l}{\left( {1 - \sqrt 3 } \right)^5} = \left( {1 +(- \sqrt 3 )} \right)^5= 1 + 5.\left( { - \sqrt 3 } \right) + 10.{\left( { - \sqrt 3 } \right)^2} + 10.{\left( { - \sqrt 3 } \right)^3} + 5.{\left( { - \sqrt 3 } \right)^4} + 1.{\left( { - \sqrt 3 } \right)^5}\\ = \left[ {1 + 10.{{\left( { - \sqrt 3 } \right)}^2} + 5.{{\left( { - \sqrt 3 } \right)}^4}} \right] + \left[ {5.\left( { - \sqrt 3 } \right) + 10.{{\left( { - \sqrt 3 } \right)}^3} + 1.{{\left( { - \sqrt 3 } \right)}^5}} \right]\\ = 76 - 44\sqrt 3 \end{array}\)
Trả lời bởi Hà Quang Minh
Số tổ hợp con có x phần tử là số tổ hợp chập x của 5.
=> Số tổ hợp con có lẻ phần tử là: \(C_5^1 + C_5^3 + C_5^5=5+10+1=16\)
Số tổ con có chẵn phần tử là: \(C_5^0 + C_5^2 + C_5^4=1+10+5=16\)
\( \Rightarrow C_5^0 + C_5^2 + C_5^4 = C_5^1 + C_5^3 + C_5^5\) (đpcm)
Trả lời bởi Hà Quang Minh