Bài 2: Vẽ ba đường conic bằng phần mềm Geogebra

QL
Hướng dẫn giải Thảo luận (1)

Thực hiện các bước đã nêu ở phương pháp ta có

a) Nhập phương trình elip theo cú pháp x^2/10 + y^2/4 = 1  vào vùng nhập lệnh ta được hình elip dưới đây:

b) Nhập phương trình elip theo cú pháp x^2/12 + y^2/3 = 1  vào vùng nhập lệnh ta được hình elip dưới đây:

c) Nhập phương trình elip theo cú pháp x^2/100 + y^2/36 = 1  vào vùng nhập lệnh ta được hình elip dưới đây:

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: Chiều cao và chiều rộng của đường hầm là 4m, 10m nên ta có: \(a = 5,b = 4\)

Nên phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

Nhập phương trình elip theo cú pháp x^2/25 + y^2/16 = 1 {y>=0} vào vùng nhập lệnh ta có hình vẽ mô phỏng đường hầm dưới đây

Vậy phương trình mô phỏng đường hầm là \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) với \(y \ge 0\)

Và có hình mô phỏng thực tế như hình trên

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Thực hiện các bước đã nêu ở phương pháp ta có

a) Nhập phương trình hypebol theo cú pháp x^2/10 - y^2/6 = 1  vào vùng nhập lệnh ta được hình hypebpl dưới đây:

b) Nhập phương trình hypebol theo cú pháp x^2/4 - y^2/3 = 1  vào vùng nhập lệnh ta được hình hypebol dưới đây:

c) Nhập phương trình hypebol theo cú pháp x^2/64 - y^2/36 = 1  vào vùng nhập lệnh ta được hình hypebol dưới đây:

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Thực hiện các bước đã nêu ở phương pháp ta có

a) Nhập phương trình parabol theo cú pháp y^2 = 16x vào vùng nhập lệnh ta được hình parabol dưới đây:

 

b) Nhập phương trình parabol theo cú pháp y^2 = x vào vùng nhập lệnh ta được hình parabol dưới đây:

 

c) Nhập phương trình parabol theo cú pháp y^2 = 32x vào vùng nhập lệnh ta được hình parabol dưới đây:

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Chóa đèn có hình dạng parabol nên phương trình mô phỏng chóa đèn có dạng \({y^2} = 2px\)

Gắn hệ tọa độ Oxy vào chóa đèn với gốc tọa độ tại đỉnh chóa đèn, suy ta phương trình đó đi qua điểm có tọa độ (3; 9)

Thay tọa độ điểm (3; 9) vào phương trình \({y^2} = 2px\), ta có \({9^2} = 2p.3 \Rightarrow p = \frac{{27}}{2}\)

Suy ra phương trình mô tả chóa đèn là \({y^2} = 27x\) với \(x \le 3\)

Hình ảnh mô phỏng chóa đèn có dạng như hình dưới:

Trả lời bởi Hà Quang Minh