Bài 2: Hoán vị, chỉnh hợp và tổ hợp

QL
Hướng dẫn giải Thảo luận (1)

a) Các đội thi đấu vòng tròn một lượt và mỗi lượt đấu sẽ có 2 đội đấu với nhau, nên số trận đấu sẽ là số cách chọn ra 2 đội từ 7 đội, mỗi cách chọn 2 đội từ 7 đội là một tổ hợp chập 2 của 7, từ đó có tất cả số trận đấu là:

\(C_7^2 = \frac{{7!}}{{2!.5!}} = 21\) (trận)

b) Mỗi khả năng ba đội được chọn đi thi đấu cấp liên trường là một tổ hợp chập 3 của 7 đội, từ đó số khả năng có thể xảy ra của 3 đội đi thi cấp liên trường là

                   \(C_7^3 = \frac{{7!}}{{3!.4!}} = 35\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Một đoạn thẳng được tạo bởi 2 điểm bất kì

Nên để có một đoạn thẳng có điểm mút thuộc các điểm đã cho thì ta chọn 2 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 2 điểm từ 6 điểm đã cho là một tổ hợp chập 2 của 6, từ đó số đoạn thẳng có điểm đầu mút thuộc các điểm đã cho được tạo ra là:

                   \(C_6^2 = \frac{{6!}}{{2!.4!}} = 15\) (đoạn thẳng)

b) Mỗi tam giác được tạo bởi 3 điểm không thẳng hàng, nên để có một tam giác mà các đỉnh của nó là các điểm đã cho thì ta chọn 3 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 3 điểm từ 6 điểm là một tổ hợp chập 3 của 6, từ đó số tam giác có đỉnh thuộc các điểm đã cho là:

                             \(C_6^3 = \frac{{6!}}{{3!.3!}} = 20\) (tam giác)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a)  Chọn 3 cờ đỏ, trắng và xanh ta có 3 cách cắm để có 4 tín hiệu khác nhau là: ĐTX, ĐXT, TĐX, TXĐ

b) Việc cắm cờ để báo tín hiệu trên bao gồm 3 công đoạn

Công đoạn 1: Chọn cờ để cắm vào vị trí thứ nhất, có 5 cách chọn trong 5 màu khác nhau

Công đoạn 2: Chọn cờ để cắm vào vị trí thứ 2, có 4 cách chọn trong 4 màu còn lại

Công đoạn 3: Chọn cờ để cắm vào vị trí cuối cùng, có 3 cách chọn trong 3 màu còn lại

Áp dụng quy tắc nhân, ta có số cách cắm cờ để báo tín hiệu nhiều nhất là:

                             \(5.4.3 = 60\) (cách)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(C_7^2 = \frac{{7!}}{{2!.5!}} = \frac{{7.6}}{2} = 21\)

b) \(C_9^0 + C_9^9 = \frac{{9!}}{{0!.9!}} + \frac{{9!}}{{9!.0!}} = 2\)

c) \(C_{15}^3 - C_{14}^3 = \frac{{15!}}{{3!.12!}} - \frac{{14!}}{{3!.11!}} = \frac{{15.14.13}}{{3.2.1}} - \frac{{14.13.12}}{{3.2.1}} = 91\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Mỗi số có 3 chữ số đôi một khác nhau lập được từ 7 chữ số đã cho là một chỉnh hợp chập 3 của 7 chữ số. Do đó, số các số lập được là

                             \(A_7^3 = 7.6.5 = 210\) (số)

b) Việc lập ra được một số lẻ phải qua 2 công đoạn

Công đoạn 1: Chọn chữ số hàng đơn vị là chữ số lẻ, có 4 cách chọn (1; 3; 5 hoặc 7)

Công đoạn 2: Chọn 2 chữ số bất kì trong 6 chữ số còn lại và sắp xếp chúng cho vị trí chữ số hàng trăm và hàng chục, mỗi số như vậy là một chỉnh hợp chập 2 của 6 phần tử, nên số các số được lập ra là:                 \(A_6^2 = 6.5 = 30\) (cách)

Áp dụng quy tắc nhân, ta có số các số có 3 chữ số lập được từ 7 chữ số đã cho là số lẻ là:            \(4.30 = 120\) (số)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Mỗi khả năng về thứ hạng của các đội bóng trong mùa giải là hoán vị của các đội bóng tham gia. Do đó, số khả năng về thứ hạng của các đội bóng trong mùa giải là

                             \({P_{14}} = 14!\) (cách)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Các trường hợp thuyết trình theo thứ tự 1, 2, 3 có thể xảy ra là:

ABC, ACB, BAC, BCA, CAB, CBA

b)

+) Từ câu a) ta thấy có tất cả 6 kết quả

+) Ngoài cách đếm ta có thể sử dụng quy tắc nhân để tìm kết quả

Kết quả bốc thăm thuyết trình gồm 3 công đoạn

Công đoạn 1: Bốc thăm xác định đội trình bày đầu tiên, có thể xảy ra 3 kết quả (A, B hoặc C)

Công đoạn 2: Bốc thăm xác định đội trình bày thứ 2, có thể xảy ra 2 kết quả (trừ 1 đội đã thuyết trình đầu tiên

Công đoạn 3: Đội trình bày cuối cùng chỉ có thể duy nhất là đội còn lại

Áp dụng quy tắc nhân, ta tìm được số kết quả có thể xảy ra là:

                             \(3.2.1 = 6\) (cách)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Sử dụng quy tắc nhân:

Việc chọn 5 cầu thủ từ 11 cầu thủ có 5 công đoạn

Công đoạn 1: Chọn cầu thủ đầu tiên, có 11 cách chọn

Công đoạn 2: Chọn cầu thủ thứ hai, có 10 cách chọn

Công đoạn 3: Chọn cầu thủ thứ ba, có 9 cách chọn

Công đoạn 4: Chọn cầu thủ thứ tư, có 8 cách chọn

Công đoạn 5: Chọn cầu thủ thứ năm, có 7 cách chọn

Vậy số cách chọn 5 cầu thủ từ 11 cầu thủ khác nhau là  \(11.10.9.8.7 = 55440\) (cách)

Cách này chỉ đúng khi các cầu thủ hoàn toàn khác nhau

Vậy nên bằng cách sử dụng quy tắc nhân không thể tìm ra câu trả lời

Áp dụng bài học

+) Mỗi cách chọn 5 cầu thủ từ 11 cầu thủ là một tổ hợp chập 5 của 11 phần tử. Do đó, số cách chọn 5 cầu thủ từ 11 cầu thủ là

                             \(C_{11}^5 = \frac{{11!}}{{5!.6!}} = 462\) (cách)

+) Mỗi cách sắp xếp 5 cầu thủ là một hoán vị của 5 cầu thủ. Do đó, số cách sắp xếp 5 cầu thủ là:

                             \({P_5} = 5!\) (cách)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là

                             \({P_6} = 6! = 720\) (cách)

Trả lời bởi Hà Quang Minh
QL

a) Các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách Lan có là:

ABC, ABD, ACD, BCD

Có tất cả 4 cách chọn 3 cuốn sách trong số 4 cuốn sách Lan có để mang về quê

b) Mỗi cách sắp xếp thứ tự 3 cuốn sách đã chọn là một hoán vị của 3 cuốn sách, từ đó số cách sắp xếp 3 cuốn sách là số hoán vị của 3 cuốn sách:

          \(3! = 3.2.1 = 6\) (cách)

c) Mỗi cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một là một chỉnh hợp chập 3 của 4 phần tử, từ đó số cách chọn và sắp xếp 3 cuốn sách và sắp xếp chúng là:         \(A_4^3 = 4.3.2 = 24\) (cách)

Trả lời bởi Hà Quang Minh