Hai ô tô xuất phát tại cùng một thời điểm với vận tốc trung bình như nhua là 40km/h từ hai vị trí A và B trên hai con đường vuông góc với nhau để đi về bến O là giao của hai con đường. Vị trí A cách bên 8km, vị trí B cách bên 7 km. Gọi x là thời gian hai xe bắt đầu chạy cho tới khi cách nhau 5km (Hình 31). Bạn Dương xác định được x thỏa mãn phương trình \(\sqrt {{{(8 - 40x)}^2} + {{(7 - 40x)}^2}} = 5\)
Làm thế nào để tìm được giá trị của x?
Bình phương hai vế ta được:
\(\begin{array}{l}{(8 - 40x)^2} + {(7 - 40x)^2} = 25\\ \Leftrightarrow 64 - 640x + 1600{x^2} + 49 - 560x + 1600{x^2} = 25\\ \Leftrightarrow 3200{x^2} - 1200x + 88 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11}}{{40}}\\x = \frac{1}{{10}}\end{array} \right.\end{array}\)
Vậy phương trình có hai nghiệm là \(x = \frac{{11}}{{40}}\) và \(x = \frac{1}{{10}}\).
Trả lời bởi Hà Quang Minh