$4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

QL
Hướng dẫn giải Thảo luận (1)

a) - Ta có: \(\overrightarrow {{u_1}}  = \left( {3\sqrt 3 ;3} \right);\overrightarrow {{u_2}}  = \left( {1 ;0} \right) \Rightarrow \cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {3\sqrt 3 .1 + 3.0} \right|}}{{\sqrt {{{\left( {3\sqrt 3 } \right)}^2} + {3^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{{\sqrt 3 }}{2}.\)

- Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)

b) – Ta có\(\overrightarrow {{n_1}}  = \left( {2; - 1} \right);\overrightarrow {{n_2}}  = \left( { - 1  ;3} \right) \Rightarrow \cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {2.\left( { - 1} \right) + \left( { - 1} \right).3} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{{\left( 1 \right)}^2} + {3^2}} }} = \frac{{\sqrt 2 }}{2}.\)

- Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)

Trả lời bởi Quoc Tran Anh Le
QL
Hướng dẫn giải Thảo luận (1)

a) Do MH vuông góc với đường thẳng \(\Delta \) nên ta có vecto chỉ phương của MH là: \(\overrightarrow u  = \left( {2;1} \right)\)

b) Phương trình tham số của đường thẳng MH đi qua \(M\left( { - 1;1} \right)\) có vecto chỉ phương\(\overrightarrow u  = \left( {2;1} \right)\) là: \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 1 + t\end{array} \right. \Leftrightarrow x - 2y + 3 = 0\)

c) H là giao điểm của MH và đường thẳng \(\Delta \)

Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\2x + y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\) . Vậy tọa độ điểm H là: \(H\left( {1;2} \right)\)

Độ dài đoạn thẳng MH là: \(MH = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {2 - 1} \right)}^2}}  = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Xét hệ phương trình gồm phương trình của d và \({\Delta _1}\) ta có: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\3x - 2y + 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = \frac{3}{2}\end{array} \right.\)

Vậy d và \({\Delta _1}\) cắt nhau tại 1 điểm duy nhất.

Xét hệ phương trình gồm phương trình của d và \({\Delta _2}\) ta có: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\x + 2y + 2 = 0\end{array} \right.\).  Hệ phương trình vô nghiệm.

Vậy d và \({\Delta _2}\) song song với nhau

Xét hệ phương trình gồm phương trình của d và \({\Delta _3}\) ta có: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\2x + 4y--4{\rm{ }} = {\rm{ }}0\end{array} \right.\). Hệ phương trình vô số nghiệm.

Vậy d và \({\Delta _3}\) trùng nhau.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}.\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Trong hình 40a, ta có góc \(\widehat {{A_1}}\) là một góc nhọn.

Trong hình 40b thì ta có 4 góc tại đỉnh A là một góc vuông.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\overrightarrow {{u_1}}  = \left( {1;1} \right),\overrightarrow {{u_2}}  = \left( {2;2} \right)\). Ta thấy, \(\overrightarrow {{u_2}}  = 2\overrightarrow {{u_1}} \).

Chọn điểm \(A\left( {1; - 2} \right) \in {\Delta _1}\). Thay tọa độ điểm A vào phương trình đường thẳng \({\Delta _2}\) ta được \({t_2} = \frac{1}{2} \Rightarrow A\left( {1; - 2} \right) \in {\Delta _2}\).

Vậy 2 đường thẳng \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Hai đường thẳng trong mặt phẳng thì cắt nhau hoặc song song hoặc trùng nhau.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Để xác định điểm M ta cần giải hệ phương trình gồm hai phương trình đường thẳng của hai đường thẳng a và b

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1},{\Delta _2}\)  lần lượt có vectơ chỉ phương là \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \). Khi đó:

a) \({\Delta _1}\) cắt \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

b) \({\Delta _1}\) song song với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc một đường thẳng mà không thuộc đường thẳng còn lại.

c) \({\Delta _1}\) trùng với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc cả hai đường thẳng đó.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Độ lớn của góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) và độ lớn của góc giữa hai vectơ \(\overrightarrow {IA} \),\(\overrightarrow {IB} \)có thể bẳng nhau hoặc bù nhau.

b) Nếu \(\left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) \le {90^o}\)thì \(\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\). Do đó,\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\) và \(\cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) \ge 0\).

Nếu \(\left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) > {90^o}\)thì \(\left( {{\Delta _1},{\Delta _2}} \right) = {180^o} - \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\). Do đó,\(\cos \left( {{\Delta _1},{\Delta _2}} \right) =  - \cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\) và \(\cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) < 0\).

Vậy ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)} \right|\)

Trả lời bởi Hà Quang Minh