Chương I - Căn bậc hai. Căn bậc ba

H24

x+\(\sqrt{x-2}=2\sqrt{x-1}\)

AH
4 tháng 5 2020 lúc 17:38

Lời giải:

ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow (x-2\sqrt{x-1})+\sqrt{x-2}=0$

$\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+\sqrt{x-2}=0$

$\Leftrightarrow (\sqrt{x-1}-1)^2+\sqrt{x-2}=0$

Ta thấy $(\sqrt{x-1}-1)^2\geq 0; \sqrt{x-2}\geq 0$ với mọi $x\geq 2$

Do đó để tổng của chúng bằng $0$ thì $(\sqrt{x-1}-1)^2=\sqrt{x-2}=0$

$\Leftrightarrow x=2$ (thỏa mãn đkxđ)

Vậy $x=2$

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
MN
Xem chi tiết
PT
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết