Bài 3. Hàm số liên tục

H24

Xét tính liên tục của hàm số \(y = \sqrt {{x^2} - 4} \).

HM
22 tháng 9 2023 lúc 12:16

ĐKXĐ: \({x^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 2\end{array} \right.\)

Vậy hàm số có TXĐ: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\).

Hàm số \(y = \sqrt {{x^2} - 4} \) là hàm số căn thức nên nó liên tục trên các nửa khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \sqrt {{x^2} - 4}  = \sqrt {{2^2} - 4}  = 0 = f\left( 2 \right)\)

\(\mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {2^ + }} \sqrt {{x^2} - 4}  = \sqrt {{{\left( { - 2} \right)}^2} - 4}  = 0 = f\left( { - 2} \right)\)

Vậy hàm số \(y = \sqrt {{x^2} - 4} \) liên tục trên các nửa khoảng \(\left( { - \infty ; - 2} \right]\) và \(\left[ {2; + \infty } \right)\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết