Ôn tập toán 6

H24

Xét số  \(\overline{abc}\) =  ab + bc + ca + ac + cb + ba (Có dấu gạch ngang trên từng số nha!! Nhìu qá nên mình không viết hết dấu gạch ngang)

a, CMR  \(\overline{abc}\)  là số chẵn và \(\overline{abc}\) chia hết cho 11

b, Tìm số \(\overline{abc}\) biết a = 1

NT
5 tháng 10 2016 lúc 19:33

a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)

\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)

\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)

\(=22a+22b+22c\)

\(=22\left(a+b+c\right)\)

Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )

Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết